import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split, GridSearchCV
import warnings

This dataset is from UC Irvine and covers various information on imported cars taken
from 1985. It was going to be used for a competition on risk assessment, but the
competition was cancelled. However, we will be using it to predict the variable of interest
which is mpg (miles per gallon). We would like to see which variables most contribute to
the gas mileage of the imported cars. To do this we use regression machine learning
techniques. First we performed linear regression and then we performed k nearest
neighbors regression. This analysis will help determine which features can be added or

removed from cars to affect their gas mileage.

Here is the link to the dataset we used in the analysis:

https://archive.ics.uci.edu/dataset/10/automobile

The dataset contains 26 features:

- "symboling", #1

- "normalized-losses" #2
- "make" #3

- "fuel-type" #4

- "aspiration" #5

- "num_of _doors" #6

- "body-style" #7

- "drive-wheels" #8

- "engine-location" #9

- "wheel-base" #10

- "length" #11
- "width #12
- "height" #13

- "curbweight" #14

- "enginetype" #15

- "numcylinders" #16
- "engine-size" #17
- "fuel-system" #18
- "bore" #19

- "stroke" #20

- "compression-ratio" #21
- "horse-power" #22
- "peak-rpm" #23

- "city-mpg" #24

- "highway-mpg" #25
- "price" #26

There were 205 records per feature before we perfomed data cleaning.

https://archive.ics.uci.edu/dataset/10/automobile

In the following cell, we dropped the normalized losses column because it had an
excessive amount of null values. Next, we replaced the "?"s with n/a's before dropping all

records with n/a values.

Most importantly, we found the mean of city-mpg (which measured miles per gallon for
cars in cities) and highway_mpg (which measured miles per gallon for cars on the
highway) to create a field called "mpg".

read in car data
df = pd.read_csv('imports-85.csv')

named columns

df.columns = ["symboling", #1
"normalized-losses", #2
"make", #3
"fuel-type", #4
"aspiration", #5
"num_of_doors", #6
"body-style", #7
"drive-wheels", #8
"engine-location", #9
"wheel-base", #10
"length", #11
"width", #12
"height", #13
"curbweight", #14
"enginetype", #15
"numcylinders", #16
"engine-size", #17
"fuel-system", #18
"bore", #19
"stroke", #20
"compression-ratio", #21
"horse-power", #22
"peak-rpm", #23
"city-mpg", #24
"highway-mpg", #25
"price"] #26

dropped normalized Losses column
df_2 = df.drop(columns=df.columns[1])

dropped remaining rows with ? values
df 3 = df_2.replace("?", np.nan)

df 3 = df_3.dropna()

df 4 = df_3

df_4["mpg"] = df[["city-mpg", "highway-mpg"]].mean(axis=1) #averaging the two va
#df_4 = df_4.sort_values(by="'peak-rpm') #sorting the dataset by rpm

df_4.head()

fuel- body- drive- engine- w

symboling make type aspiration num_of doors style wheels location
alfa- .

0 3 gas std two convertible rwd front
romero
alfa-

1 1 gas std two hatchback rwd front
romero

2 2 audi gas std four sedan fwd front

3 2 audi gas std four sedan 4wd front

4 2 audi gas std two sedan fwd front

5 rows x 26 columns

(CG— 4

(Above is the head of the cleaned dataframe)

For this section we used linear regression to determine which factors affect mpg the
most, and we split the training and test data to allow us to test our predictions of which

cars have the best mpg :

The comparisons we will make in this section are:
mpg vs Peak rpm

mpg vs Engine type

mpg vs RPM

mpg vs horse-power

mpg vs fuel-system

mpg vs fuel-type

mpg vs numcylinders

mpg vs car make

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LinearRegression

from sklearn.feature_selection import RFE

from sklearn.metrics import mean_squared_error, r2_score

Next, we dropped the make and price columns before performing our linear regression.
In order to remove unecessary columns in the dataset, and help with the model's
evaluation, we dropped the make and price column. We changed the values categorical
columns into integers, and put it into a panda dummies dataframe to make it easier to

work with.

data_frame = df_4.drop(columns=[‘make', 'price'])
convert_colums = ['wheel-base', 'length', 'width', 'height', 'curbweight', 'numc

for col in convert_colums:

pd.to_numeric(data_frame[col], errors='coerce")
mtw_categorical_cols = data_frame.select_dtypes(include=['object']).columns
mtw_df = pd.get_dummies(data_frame, columns=mtw_categorical cols, drop_first=Tru

mtw_df.head()

symboling W[Le;slc; length width height curbweight engisrilze; compresiLotri: ::;;
0 3 886 1688 64.1 48.8 2548 130 9.0 21
1 1 945 1712 655 52.4 2823 152 9.0 19
2 2 99.8 1766 66.2 54.3 2337 109 10.0 24
3 2 994 1766 664 54.3 2824 136 8.0 18
4 2 998 1773 66.3 53.1 2507 136 8.5 19
5 rows x 183 columns
« G 4

Next, we split the data into training and testing sets.

#Split the data into 30% testing 70% training

mtw_X = mtw_df.drop(columns=["mpg'])

mtw_y = mtw_df['mpg']

mtw_X_train, mtw_X_ test, mtw_y train, mtw_y test = train_test_split(mtw_X, mtw_y

We then scaled and transformed the data using a StandardScaler from sklearn.

mtw_scaler = StandardScaler()
mtw_X_train_scaled = pd.DataFrame(mtw_scaler.fit_transform(mtw_X_ train), columns
mtw_X_test_scaled = pd.DataFrame(mtw_scaler.transform(mtw_X test), columns=mtw_X

Finally, we set up the linear regression models. For this part we set up the linear
regression model, we begin by defining the number of features, then find the RFE. Adapt
the RFE to fit the scaled data then transform the testing data using the transform
function. We then store the names of the columns into an array. Then set up the linear

regression line according to the train data.

mtw_model = LinearRegression()

mtw_n_features = 1

mtw_rfe = RFE(mtw_model, n_features_to_select=mtw_n_features)
mtw_X_train_selected = mtw_rfe.fit_transform(mtw_X_ train_scaled, mtw_y train) #F
mtw_X_test_selected = mtw_rfe.transform(mtw_X test scaled) #Transforms the testi

mtw_selected_features = mtw_X_ train.columns[mtw_rfe.support_].tolist() #stores t
mtw_model.fit(mtw_X_train_selected, mtw_y train) #Sets up the Linear regression
mtw_y_pred = mtw_model.predict(mtw_X test selected) #predict y values based off

mtw_rmse = np.sqrt(mean_squared_error(mtw_y_test, mtw_y pred)) #calculates the K
mtw_r2 = r2_score(mtw_y test, mtw_y pred) #caculates the R-squared score

Plot for the graphs. We look at the actual vs predicted values on a scatter plot with the

linear line.

fig, axl = plt.subplots(1l, 1, figsize=(7, 7))

axl.scatter(mtw_y test, mtw_y pred, alpha=0.5, s=20, color='purple', label='Prec
mtw_min_val = min(min(mtw_y test), min(mtw_y pred))

mtw_max_val = max(max(mtw_y test), max(mtw_y pred))

axl.plot([mtw_min_val, mtw_max_val], [mtw_min_val, mtw_max_val], linewidth=1, cc
axl.set_xlabel('True Output', fontsize=16)

axl.set_ylabel('Predicted Output', fontsize=16)

axl.set_xlim(mtw_min_val, mtw_max_val)

axl.set_ylim(mtw_min_val, mtw_max_val)

axl.set_title("Predicted vs Actual")

ax1l.legend()
plt.show()
Predicted vs Actual
50 yia
e Predictions '.,/ 1
---- |deal ',-"
-’/J
45 T ,/J,
f'},
e,
II’J

40 e
+— .~
3
et J,’
=3 O,r’
QO 35 »
© o
m ’/ []
+— o
L e @
T 30 &b
@ gpib
nL: ,Jzﬁ []

o
,6 [s]
| Ao
25 ° ,/
] 9,/0
o
#
20 - s
I"
fof,
T T T T T T
20 25 30 35 40 45 50

True Output

When we graphed it the data was all along the linear regression line. The model works
amazingly. The data lines up perfectly with the linear regression line. The difference
between the actual and predicted values was very small. We think this works very well as

a model for predicting the mpg. It appears to be very accurate.

| then predicted the y values based off the test data, and then calculated the RMSE as
well as the R-squared score.

print(f"RMSE: {mtw_rmse}")
print(f"R-Squared Score: {mtw_r2}")

RMSE: 0.8257367003161341
R-Squared Score: 0.9822841307345045

The RMSE is .83 and the R-squared is .98. This further indicates that our model is very
strong.

For our next section, we decided to use k nearest neighbors regression model. We
thought that model would lend itself well to the mixture of categorical and numerical
data. It required us to do some binning of the categorical data, but we think the results

worked well.

First we did imported more sklearn modules to utilize their useful functions.

from sklearn.feature_selection import chi2, SelectKBest, f_classif
from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsRegressor

from sklearn.metrics import mean_squared_error

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

We manipulated the dataframes some more here. We also calculated a feature called
"volume" which is the width times the length times the height of the cars. We thought
this metric would be useful because a larger volume usually indicates a heavier car which
would presumably impact mpg.

df_CM_test = pd.read_csv('imports-85.csv')

df_CM_test.columns = ["symboling", "normalized-losses", "make", "fuel-type", "as
"body-style", "drive-wheels", "engine-location", "wheel-base", "le
"height", "curbweight", "enginetype", "numcylinders", "engine-size
"horse-power", "peak-rpm", "city-mpg", "highway-mpg", "price"]

df_1_CM
df_1_cM

df_CM_test.replace("?", np.NaN)
df_1 CM.dropna()

dropped normalized lLosses column
df 1 CM = df_1_CM.drop(columns=df_CM_test.columns[2])

average city-mpg and highway-mpg to put in new column called average _mpg

df_1 CM['average mpg'] = (df_CM_test['city-mpg'] + df_CM_test['highway-mpg']) /
df_1 CM['volume'] = df_CM_test['length'] * df_CM_test['width']* df_CM_test['heig

Next we binned the data. We created bins, labels and split the mpg into different parts.
We turned the fuel-types, aspiration, drive-wheels and numcylinders data into discrete
numerical values. Then we chose the columns with the most relevant xdata: curb weiht,

engine size, number of cylinders, and horsepower. There were some warnings, but
nothing that prevented the model from running or affected the code.

warnings.filterwarnings("ignore", category=DeprecationWarning)

25, 32, 52]

bins = [0,
= ['low', 'middle', 'high']

labels

df_1 CM['mpg_labels'] = pd.cut(df_1_CM['average mpg'], bins, labels=labels)

df_1 CM.infer_objects(copy=False)
df_1 CM['fuel-type'].replace({'gas': 1, 'deisel': 2, 'diesel':2 }, inplace=True)

df_1 CM['aspiration’].replace({'std': 1, 'turbo': 2 }, inplace=True)
df_1 CM['drive-wheels'].replace({'fwd': 1, 'rwd': 2 , '4wd':4}, inplace=True)
df_1_CM['numcylinders'].replace({ 'two': 2, 'twelve': 12, 'three': 3, 'four':4, '

df_1 CM['mpg_labels'].value_counts(normalize=True)

#selected the columns with the most relevant xdata: curb weight, engine size, #
X_CM= df_1_cM.iloc[:,[2,3,6,8,12,14,15,17,18,19,20,21,24,26]]

X_CM = X_CM.astype(float)

col_names = X_CM.columns

y_CM= df_1_CM.iloc[:,27]

Next we again split the data into training and test data.

X_train_CM, X test CM, y train_CM, y test CM = train_test_split(X_CM, y CM, test

We then standardized the data because k nearest neighbors performs better with scaled
data. We subtract by the mean and then divide by the range. Lastly, we reshaped the
data set using a melt function.

data_CM = X_CM

data_std CM = (data_CM - data_CM.mean())/(data_CM.max() - data_CM.min())
data_CM = pd.concat([data_std CM,y CM], axis=1)

reshape the dataframe using melt()
data_CM = pd.melt(data_CM, id_vars = 'mpg_labels', var_name = 'features',value_r

K nearest neighbors suffers from the curse of dimensionality, and with only 192 records,
we did not want to risk overfitting the data. So, we decided to use a smaller number of
features. To accomplish this we used a chi-squared test from SelectKbest function to

choose the 5 most predictive variables.

ft_CM= SelectKBest(chi2, k = 5).fit(X_train_CM, y train_CM)
cols_idxs = ft_CM.get_support(indices=True)
xall CM = X _CM.iloc[:,cols_idxs]

The variables chosen are curbweight, engine-size, horse-power, price, and volume. By
inspection, it seems that the price has no actual effect on the mpg, so the select function

probably chose a less than ideal variable, so we removed it from the dataframe before

generating the model. Preliminary testing we did running the model with price showed
that it actually lowered the R-squared and increased RMSE, so our choice to drop it was

justified.

xall CM = xall CM.drop('price’, axis=1)

Next we created a dataframe of input and output variables, imported more modules, and

pre-allocated memory for the arrays we will use to find optimal k values for the model.

#our dependent variable
yall CM = df_1 CM.iloc[:,25]

create data frame df that consists only of our input and output variables
df_best CM = pd.concat([xall CM, yall CM], axis=1)#simple data frame for conveni

#importing necessary functions

from sklearn.neighbors import KNeighborsRegressor

from sklearn.metrics import mean_squared_error # Import mean_squared_error from
import math

#pre-allocating memory for arrays
inrmse_values_CM = np.arange(0.0,47.0)
outrmse_values CM = np.arange(0.0,47.0)
k_values_CM = np.arange(0,47)

We created a function that tests various k values for the prospective models and graphs
the training data rmse and test data rmse values vs the k values used in the models.

#function for testing for optimal R's
def knn_optimal_k_test(xall_ attempt_CM, scaled, plot):
xall train_CM, xall test CM, yall train_CM, yall test CM = train_test_split(

knn_CM = KNeighborsRegressor()

#Fits and models k nearest neighbors based off various R values and calculat
for i in k_values_CM:

knn_CM = KNeighborsRegressor(n_neighbors=i+1)

knn_CM.fit(xall_train_CM, yall train_CM)

In-sample RMSE
y_train_pred_CM = knn_CM.predict(xall_train_CM)
inrmse_CM = np.sqgrt(mean_squared_error(yall train_CM, y train_pred_CM))
inrmse_values_CM[i] = inrmse_CM
Out-of-sample RMSE
y_test pred CM = knn_CM.predict(xall_test_CM)
outrmse_CM = np.sqrt(mean_squared_error(yall test CM, y test pred_CM))
outrmse_values CM[i] = outrmse CM
#plots RMSE values for train and test data vs various R's
if plot == True:
plt.plot(k_values_CM, inrmse_values_CM, color='green')

plt.plot(k_values_CM, outrmse_values_CM, color='red")

plt.locator_params(axis='x', nbins=45)
plt.locator_params(axis='y', nbins=10)

if scaled == True:

plt.title("K Nearest Neighbors (SCALED):Training Data = Green, Test
else:

plt.title("K Nearest Neighbors:Training Data = Green, Test Data = Re
plt.xlabel("k")
plt.ylabel("RMSE")

plt.show()
return {"xall_train_CM": xall_train_CM, "xall test_CM": xall_test_CM, "yall_

We then tested for optimal k values and graphed their performance. This was suboptimal
because the x values were not scaled which is often necessary or k nearest neighbor

models to produce useful results. So we scaled the data and ran the function again.

#xall_CM is unscaled so it does not give good results
result_attempt_1 CM = knn_optimal k_test(xall CM, False, True)
unscaled k CM = 4

#scaling x values
xall std CM = (xall CM - xall CM.mean())/(xall CM.max() - xall CM.min())

#xall_std CM is the k based off the scaled values of x
result_attempt 2 CM = knn_optimal_k_test(xall std _CM, True, True)
scaled_k CM = 3

K Nearest Neighbors:Training Data = Green, Test Data = Red

-

RMSE

T T T T T T
=20 2 46 81012141618202224262830 3234 3638 4042 4446 48
k

K Nearest Neighbors (SCALED):Training Data = Green, Test Data = Red

4.0

3.5 4

3.0 A

2.5

RMSE

1.5+

1.0~

0.5 A

0.0

2.0 4

T T T T T T T
—20 2 4 6 81012141618202224262830 3234 36384042 44 4648
k

We next look at the log(1/k) version.

#finding the Log(1/R) graph for optimal R's
complexity values CM = np.arange(0.0,47.0)

for

plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
.show()

plt

i in k_values_CM:

complexity CM = math.log(1/(k_values CM[i]+1))
complexity_values_CM[i] = complexity_ CM

plot(complexity values_CM, inrmse_values_CM)
plot(complexity values CM, outrmse_values_CM)

plot(complexity values_CM, inrmse_values_CM, color='green')
plot(complexity values_CM, outrmse_values CM, color='red")
title("log(1/k) Nearest Neighbors: Training Data = Green, Test Data =
xlabel("log(1/k)")

ylabel("RMSE")

xticks(np.arange(-4, 0, step=.5))
yticks(np.arange(9, 5, step=1))

Red")

log(1l/k) Nearest Neighbors: Training Data = Green, Test Data = Red

4_

RMSE
%)
1

0_

T T T T T T T T
—4.0 —-3.5 —3.0 2.5 =2.0 -1.5 -1.0 —0.5
log(1/k)

From the graphs we can determine that the optimal value of k for our model is likely k

=3. We use this to fit another model.

#fitting kR nearest neighbors using data and the optimal kR value
kbest_CM = scaled_k_CM

knn_regressor_CM = KNeighborsRegressor(n_neighbors=kbest_ CM)
knn_regressor_CM.fit(result_attempt_2_CM["xall train_CM"], result_attempt_2 CM["

é v KNeighborsRegressor

éKNeighborsRegressor(n_neighbors=3)

Next, we make predictions using the model and graph the scatterplot and calculat

Make predictions on the test data using K nearest neighbors model and prints c
yall pred CM = knn_regressor_CM.predict(result_attempt_2 CM["xall test CM"])
rmse_CM = np.sqrt(mean_squared_error(result_attempt 2 CM["yall test CM"], yall g
r2_CM = r2_score(result_attempt_2 CM["yall test CM"], yall pred_CM)
print("RMSE:", rmse_CM)

print("r2:", r2_CM)

plt.figure(figsize=(10, 6))

plt.scatter(result_attempt_2 CM["yall test CM"], yall pred_CM, color='blue', lat
plt.plot([min(result_attempt_2 CM["yall test CM"]), max(result_attempt_ 2 CM["yal
plt.title('KNN Regression: Predicted vs Actual')

plt.xlabel('Actual mpg')

plt.ylabel('Predicted mpg')

plt.legend()

plt.show()

https://scikit-learn.org/1.5/modules/generated/sklearn.neighbors.KNeighborsRegressor.html

RMSE: 2.1704027617352843
r2: 0.8338582667120801
KNN Regression: Predicted vs Actual

® Predicted vs Actual
—— Ideal fit
40 -

35 A

Predicted mpg
w
o

[x*]
(5,]
I

20 A

20 25 30 35 40
Actual mpg

An R-squared value of 0.83 and a root mean squared error of 2.17 indicate that our
model is fairly effective because it could explain 83% ofvariance. 2.17 mpg is a relatively

small amount of error as well.

Finally, we end the report by performing cross-validation. For this we chose to use k-fold
validation scoring on R-squared.

#Cross Validation. I used k-fold cross validation scoring on R2.
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score

kf_CM = KFold(n_splits=10, shuffle=True, random_state=123)

model CM = KNeighborsRegressor(n_neighbors=2)

scores_CM = cross_val _score(model_CM, xall std CM, yall CM, cv=kf_CM, scoring='r
average_r2_CM = np.mean(scores_CM)

print(f"R2? Score for each fold (k=2): {[round(score, 4) for score in scores_CM]}
print(f"Average R? (k=2): {average r2_CM:.2f}")

kf 2 CM = KFold(n_splits=10, shuffle=True, random_state=123)

model 2 CM = KNeighborsRegressor(n_neighbors=3)

scores_2 CM = cross_val _score(model_2 CM, xall std_CM, yall CM, cv=kf_2 CM, scor
average_r2_2 CM= np.mean(scores_2_CM)

print(f"R2? Score for each fold (k=3): {[round(score, 4) for score in scores_2_ CV
print(f"Average R? (k=3): {average r2 2 CM:.2f}")

kf 3 CM = KFold(n_splits=10, shuffle=True, random_state=123)

model 3 CM = KNeighborsRegressor(n_neighbors=4)

scores_3 CM = cross_val _score(model_3 CM, xall std_CM, yall CM, cv=kf_3_CM, scor
average_r2_3 CM = np.mean(scores_3_CM)

print(f"R2? Score for each fold (k=4): {[round(score, 4) for score in scores_3 CV
print(f"Average R2? (k=4): {average_r2_3 CM:.2f}")

R2 Score for each fold (k=2): [0.7118, ©.7232, 0.5666, ©0.4714, ©.7595, 0.6974, 0.
8195, ©.9797, 0.8891, 0.694]

Average R2? (k=2): 0.73

R2 Score for each fold (k=3): [0.7555, ©.7014, ©.5092, 0.7743, 0.859, ©0.7193, 0.7
671, ©.9411, ©.8987, 0.652]

Average R2 (k=3): 0.76

R2 Score for each fold (k=4): [0.7857, ©.7051, ©.5113, ©.8553, 0.9174, ©.7413, 0.
7314, ©.8775, 0.9048, 0.6144]

Average R2? (k=4): 0.76

The crossvalidation validates our choice for k.

In conclusion: We believe that this data-set can easily be used to estimate the mpg of
imported cars. Our linear regression had an R-squared of .98 and a lower RMSE than the
k-nearest neighbors model, so it likely is superior in some ways. The k nearest neighbor
model on the other hand got an R-squared of .83 with only 4 predictor variables, making
it the simpler model. For the linear regression we used every paramater and for the k
nearest neighbor we used curbweight, engine-size, horse-power, and volume . The linear
regression problem has a low level of variance and a high level of bias, and the k nearest
neighbor has a higher level of variance and a lower level of bias. The linear regression is

probably worse at predictions for out of sample data on average.

