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Abstract/Executive Summary 

The Centers for Disease Control and Prevention (CDC) aims to identify any relationships 

between diabetes and an individual’s lifestyle. This agency has tasked our team, the Sigma 

Dynamics, to develop a machine learning (ML) model to predict a patient’s diabetes risk 

classification (diabetes and healthy) by using the collected healthcare/demographic statistics 

along with the health-related survey data from The Behavioral Risk Factor Surveillance System 

(BRFSS). This dataset consists of a total of 1,014,720 demographic observations, 1,268,400 

observations for lifestyle behaviors, health status, and disease history, and 761,040 healthcare 

access observations. 

For the first research question: which machine learning model achieves the highest performance, 

we tested and developed three separate ML models (logistic regression, random forest, and 

neural network) on the CDC survey data. To find which ML model is the best to predict a 

patient’s diabetes risk classification, we calculated the following performance measures of the 

three models: accuracy, sensitivity, specificity, F1-score and area under the curve (AUC) derived 

from receiver operating characteristic (ROC) curve. Among these performance measures, we 

prioritize sensitivity because this is a medical diagnosis ML model and we want the rate of 

misclassification of true diabetic patients as low as possible. AUC is a secondary prioritized 

measure because it can show the overall performance and identify the model with the best 

trade-off. Among the three models, the neural network outperformed the other two models with a 

close to 90% sensitivity (neural network: 88%; Logistic regression: 77%; random forest: 78%) 

and higher AUC (neural network: 0.83; Logistic regression: 0.82; random forest: 0.82). 
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For the second research question: what are the key features or factors associated with diabetes 

that differ between male and female patients, we developed the three aforementioned ML models 

on the male and female subsets, separately. Not surprisingly, the neural network still 

outperformed the other two models in terms of sensitivity in both male (neural network: 89%; 

Logistic regression: 76%; random forest: 76%) and female (neural network: 87%; Logistic 

regression: 77%; random forest: 79%) subsets, and it also slightly outperformed in terms of 

AUC. To assess which features contribute most to diabetes classification in males and females 

from the three models, we used permutation importance evaluated by the changes in AUC 

derived from ROC. This method reveals the drop in model performance when a feature’s values 

are randomly shuffled, indicating how much the model relies on that feature. By calculating the 

permutation-based importance measures for the features in both male and female subsets for 

each model, and subtracting the importance measure of females from males, we were able to 

obtain the importance difference index between males and females (importance difference index 

= importance measure in males - importance measure in females). This index reflects the 

differed associations of the features with diabetes between males and females. A positive index 

indicates the feature is more important for males, whereas a negative index indicates the feature 

is more important for females. We observed that age is strongly associated with diabetes in males 

but not in females (importance difference index: 0.0336 for Logistic regression, 0.0021 for 

random forest and 0.0362 for neural network), whereas body mass index (BMI) is strongly 

associated with diabetes in females but not in males (importance difference index: -0.0078 for 

Logistic regression, -0.0077 for random forest and -0.0134 for neural network). In addition, 

different diseases were also revealed differed associations: coronary heart disease is more 

associated to males, whereas high blood pressure and high cholesterol are more associated to 
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females. These findings support the need for sex-specific risk models, as feature importance 

varies between males and females.  
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Project Plan 

CDC description 
 

The Centers for Disease Control and Prevention (CDC) serves as the national public health 

agency for the United States. This organization’s mission is to protect the overall public health of 

America.  

Since the CDC is a public health organization, most of its information is publicly available 

online. One of its purposes is to provide health guidelines and disease statistics to educate those 

who are susceptible to any health threats prevalent in the U.S. or abroad. Additionally, the CDC 

conducts research on disease threats on a global scale to develop strategies and treatments to 

counteract these outbreaks. This public health organization conducts ongoing research to create 

tactics for effective disease control/prevention, improve health treatments, identify risk factors 

for new or existing diseases, and promotes healthy habits for individuals with existing health 

conditions. Furthermore, the CDC plays a critical role in the training and preparation of public 

health workers and leaders through their career/training programs.  

 

CDC Overview: 

Organization - Centers for Disease Control and Prevention (CDC) 

Budget - $9.683 billion (FY 2025) 

Total Employee Count - 11,814 

Global Employee Count - over 1,700 health professionals all over 60 countries, 1,300 local staff, 

and 400 staff from the U.S. 

Key Leaders: 

Susan Monarez, PhD - Acting Director, First Assistant to the Director, Principal Deputy Director 
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Debra Houry, MD MPH - Deputy Director for Program and Science/Chief Medical Officer 

Nina Witkofsky - Deputy Director of Public Affairs/Acting Director of Communications 

Sara Patterson - Office of the Chief Operating Officer (OCOO) 

Matthew Buzzelli - Office of the Chief of Staff 

Top Competitors: 

National Health Service (NHS) 

Mayo Clinic 

World Health Organization (WHO) 

MedlinePlus 

NHS inform 

 

Analysis opportunity 
 

The Centers for Disease Control and Prevention (CDC) aims to identify any relationships 

between diabetes and an individual’s lifestyle. This agency has tasked our team, Sigma 

Dynamics, to develop a machine learning model to predict a patient’s diabetes risk classification 

(diabetes, pre-diabetes, healthy) by using the collected healthcare/demographic statistics along 

with the health-related survey data from the Behavioral Risk Factor Surveillance System 

(BRFSS). This dataset consists of a total of 1,014,720 demographic observations, 1,268,400 

observations for lifestyle behaviors, health status, and disease history, and 761,040 healthcare 

access observations. Our efforts will contribute to the long-term goal of preventing diabetes in 

patients through early detection based on an individual’s lifestyle factors. 

 
 
Research questions 
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This project aims to support the CDC's efforts in understanding and predicting diabetes 

prevalence by leveraging machine learning techniques applied to their survey data. To guide our 

investigation and model development, we focus on the following two research questions: 

RQ1: Which machine learning model achieves the highest performance, particularly in 

sensitivity, for predicting diabetes using the CDC dataset?​

 Given the public health implications of missed diagnoses, our primary goal is to identify a 

machine learning model that maximizes sensitivity (recall)—the ability to correctly identify 

individuals with diabetes. We will benchmark several supervised learning algorithms, including 

logistic regression, random forests, and neural networks. Model performance will be evaluated 

across multiple metrics, with a focus on sensitivity to ensure the model is effective in flagging 

potential cases of diabetes for further screening or intervention. 

RQ2: What are the key features or factors associated with diabetes that differ between 

male and female patients in the CDC dataset?​

 We aim to explore feature importance and potential sex-based differences in the risk factors 

associated with diabetes. We will identify which features most strongly contribute to diabetes 

predictions and assess how these features differ between male and female patients. This analysis 

will provide insight into potential disparities and inform targeted prevention or outreach 

strategies. 

 

Hypothesis 

H1. The best machine learning model is robust even if we subdivide the dataset into male 

and female-specific subsets. 
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We will compare the performances of different machine learning models on all samples, male 

only samples, and female only samples respectively. We expect the best model will outperform 

other models with either all samples set or sex-specific sample subsets. We will test this 

hypothesis in terms of different performance measuring metrics, especially sensitivity. 

H2. Different features/factors contribute to the occurrence of diabetes in male and female 

populations. 

There has been scientific research showing different causes and clinical manifestations between 

male and female diabetic patients (https://pmc.ncbi.nlm.nih.gov/articles/PMC10163139/). In this 

capstone project, we expect to observe features/factors contributing to the occurrence of diabetes 

in male and female populations differently. 

 

Data 

The Behavioral Risk Factor Surveillance System (BRFSS) is a health-related telephone survey 

that is collected annually by the CDC. Each year, the survey collects responses from over 

400,000 Americans on health-related risk behaviors, chronic health conditions, and the use of 

preventative services. It has been conducted every year since 1984. For this project, the data 

collected for the year 2015 was used. This dataset contains three different versions depending on 

the sample sizes and the definition of predicting variable diabetes. For this project, the version 

with the largest sample size and a clear binary definition of diabetes will be used 

(diabetes_binary_health_indicators_BRFSS2015.csv). It has a total of 21 features, which can be 

broken down into the following categories. 

Demographic attributes 

https://pmc.ncbi.nlm.nih.gov/articles/PMC10163139/
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This dataset contains demographic characteristic features for individual samples, including sex, 

age, education, income and body mass index (BMI). 

Life habit 

The following life habit features were included: smoking, consume fruits, consume vegetables, 

heavy drinking and physical activity. 

General health 

The following health-related features were included: general health, mental health, physical 

health, and difficulty walking. 

Disease history 

The following disease history related features were included: high blood pressure, high 

cholesterol, stroke, heart disease or attack. 

Health coverage 

The following health coverage related features were included: health insurance and not seeing a 

doctor because of cost. 

 
 
Measurements 
 
It is important to consider what is being measured as well as what influential factors are present 

in our analysis. Some of the measurements derived from the collected CDC data include 

demographic features, lifestyle behaviors, health status, disease history, and healthcare access. 

The demographic features such as sex, age, income, and body mass index (BMI) correlate with 

disease presence and risk. Lifestyle behaviors such as smoking, heavy drinking, physical activity, 

and the daily consumption of fruits/vegetables all influence the risk of diabetes. Health status 

including general health, mental health, physical health, and difficulty walking captures an 
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individual's overall well-being which could be affected by diabetes. Disease history including 

pre-existing conditions could increase the risk of developing diabetes. Lastly, healthcare access 

indicates whether an individual has health insurance and if they may have avoided seeing a 

doctor due to the cost of medical care, which could leave an individual more prone to developing 

diabetes. 

The Centers for Disease Control and Prevention (CDC) has provided a dataset using both 

demographic/healthcare measurements and survey data from the Behavioral Risk Factor 

Surveillance System (BRFSS) to analyze key factors and gain valuable insights. By using the 

given indicators/measurements gathered from multiple sources, this data allows for a deeper 

analysis to capture the relationship between an individual's lifestyle and diabetes. 

 

Methodology 

In exploratory data analysis, we will perform a pairwise Pearson correlation analysis between 

numerical features and calculate pairwise Jaccard similarity coefficients between categorical 

features to find possibly redundant features. For example, whether fruit lovers are more likely to 

be vegetable lovers? If the two features are highly correlated (i.e. Jaccard index > 0.9), only one 

feature will be retained for follow-up analyses to reduce calculation burden, and the retained 

feature will be used as an agent for the removed feature. 

For research question 1, we will compare multiple machine learning models, including logistic 

regression, random forest, and neural network, to evaluate their performances based on all 

sample super-set, the male subset, and the female subset. Due to a higher percentage of features 

being categorical in the dataset, to further reduce the computation burden, we will apply latent 

class analysis to find latent features to represent categorical features for the samples. We will 
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evaluate based on accuracy, sensitivity, specificity, and F1-score. Of these performance 

measuring metrics, we especially care about sensitivity because we don’t want our machine 

learning model to miss any patients to delay their treatments. 

For research question 2, we will determine the most important features/factors for either the male 

or female subset. After building a model, we will extract the coefficients or indices that can 

quantify the importance of these features. For example, log-odds coefficients from a logistic 

regression or Gini importance indices, which measure the mean decrease in impurity from a 

random forest. In addition, we will also measure the rank changes of the features between males 

and females. A higher rank change index indicates the feature plays a more different role 

between males and females. 

 

Computational Methods and Outputs 

We will use logistic regression, random forest, and neural network to answer RQ1: Which 

machine learning model achieves the highest performance, particularly in sensitivity, for 

predicting diabetes using the CDC dataset? 

 First, we must choose the proper model performance measure. The relevant choices are 

precision score, recall score, and F1. Recall score measures the model’s ability to find all 

relevant instances of a class in a data set. Precision score measures what proportion of the risk 

factors identified were actually relevant. Since Recall and Precision Scores are complementary, 

they may be balanced by the use of the F1 Score. Regarding our first question: Which machine 

learning model achieves the highest performance, particularly in sensitivity, for predicting 

diabetes using the CDC dataset? We will be identifying individuals for diabetes screening. 

Failing to identify an individual with diabetes could delay treatment which is a much worse 
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outcome than the cost of a false positive: making an extra trip to the doctor for further 

examination. So for the first question, false negatives would be more critical and we should 

choose Recall as our metric for comparing models. For our second question: What are the key 

features or factors associated with diabetes that differ between male and female patients in the 

CDC dataset? We should use the F1 Score to balance Precision and Recall since the risk factors 

should be both identified and identified correctly. 

Other than the performance metric, both research questions will follow similar procedures. For 

our Logistic model, we will preprocess the data by scaling and treating outliers and 

multicollinearity. Our Random Forest and Neural Network models will use unprocessed data. For 

the Random Forest and Neural network, tuning is critical. For Random Forest, we will use 

Random Search Cross Validation using a Random Hyperparameter Grid. For our Neural 

Network models, we will tune the most impactful hyperparameters: number of hidden layers, 

number of neurons, and the learning rate. 

If the performance on Random Forest and Neural Network models are still underperforming, we 

will look at class imbalance for our first research question. According to the CDC, 11% of the 

US population has diabetes (which means that 89% don’t). Since we have a mix of numerical 

and categorical data, we can use SMOTE-NC, which stands for Synthetic Minority 

Oversampling Technique. NC stands for numerical and categorical. This technique is an 

algorithm to generate new synthetic data of the minority class. 

By these steps, we will have our best models and our best measure of which is best, as well as 

our best answer for the features unique to each gender. 
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Output Summary 

For our exploratory data analysis, we will output a heatmap showing the Pearson Correlation 

such as this: 

 

When we are choosing the number of classes for Latent Class analysis, we will output an elbow 

plot like this: 

 

To compare models to answer question 1, we will output a table such as: 
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We can use the built-in “feature importance” method in our random forest to give us a ranked list 

of the features. We could run it on the male patients and on the female patients, the plot the 

importance of the features in a double bar chart like the one below: 
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Campaign Implementation 

Diabetes is a chronic killer. According to the Orlando Clinical Research Center, diabetes “kills 

more people every year than breast cancer and AIDS combined. Complications from diabetes 

can vary. However, the most prevalent comorbid conditions include kidney disease, amputations, 

blindness, cardiovascular disease, obesity, hypertension, hypoglycemia, dyslipidemia, and risk of 

heart attack or stroke.” 

Each of our research questions could benefit researchers investigating diabetes. The answer to 

question one, “Which machine learning model achieves the highest performance, particularly in 

sensitivity, for predicting diabetes using the CDC dataset?” would give researchers ideas about 
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which model would be best for their case use. The answer to question two, “What are the key 

features or factors associated with diabetes that differ between male and female patients in the 

CDC dataset?” could suggest avenues for new research focusing on gender specific: symptoms, 

progression of the disease and prognosis. Patients and diagnosticians could also benefit from the 

answer to question 2, by showing which factors are more likely to be present in a woman with 

diabetes versus a man with it.  



18 

Exploratory Data Analysis 

The version of the data we used for the project from the diabetes dataset from the CDC is the one 

with the largest sample size, and target variable is binary (healthy or diabetes). We performed 

exploration with respect to four aspects (subheadings). 

1. Correlations Between the Features 

We explore the correlations between different features in order to identify highly related features. 

For example, whether fruit lovers are also very likely to be vegetable lovers? If the features are 

highly correlated, it is not necessary to include both of them, and one feature can be used as a 

surrogacy to the other. This reduction can avoid redundancy and also lessen computation burden. 
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Above is a heatmap of the Pearson correlations for our numerical data. Our data falls into two 

distinct categories: binary data and numerical data. We calculated the Pearson correlations for the 

numerical data. If two features are highly correlated, then there is a danger of multicollinearity 

causing issues in our models later on. However, according to our exploration of the data using 

the Pearson correlations, there are no features that are significantly highly correlated. This 

implies there is not a relatively large danger of multicollinearity should we use them in our 

models. 

Because our data falls into two distinct categories, binary data and numerical data, we chose to 

use Jaccard similarity on the numerical data. The data for the binary features came from a phone 

survey performed by the CDC. The survey was called the Behavioral Risk Factor Assessment 

Surveillance System.  

According to the data exploration of these binary features, the only two features with a Jaccard 

similarity greater than .9 were cholesterol check and any healthcare. Due to the fact that we 

believe they are truly measuring different things, we will keep those two features, despite the fact 

that they have a Jaccard similarity above the .9 threshold. None of the other binary features 

exhibited a Jaccard similarity greater than our .9 threshold, so they will also remain in the 

models. From this analysis, we are confident that the binary features we analyzed will not be too 

similar as to cause problems in our models later. We have a heatmap of the Jaccard similarity 

matrix calculated from our binary features below. 
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2. Feature differences between diabetic patients and healthy controls 

We explore the feature differences between diabetic patients and healthy controls in order to 

identify features which may be good indicators of diabetes in machine learning models. For 

example, if the distributions of a numerical feature are different between diabetic patients and 

healthy controls, or the positive percentages of a binary feature are different between diabetic 

patients and healthy controls. 
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The figure above shows various distributions of each numerical feature in the CDC dataset, by 

diabetes status. The distribution of BMI for healthy individuals appears to have a general mean at 

25 compared to those with diabetes with a slightly greater average which lies around 30. This 

indicates a greater average BMI for people with diabetes. Another observation is that the 

distributions for general health for diabetes patients mainly lie on the good to poor general health 

rating scale (3 to 5), whereas healthy patients lie on the excellent to good scale (1 to 3). Both the 

mental health and physical health distributions for diabetes/healthy patients appear to behave in a 

similar manner in that most of the data for both features fall at 0. This suggests that both groups, 

diabetes or healthy, report more individuals with a very minimal amount of poor mental health 

days or physical injury/illness days. The distribution of age for the diabetic group is shifted more 

to the right compared to the healthy group which means that the average age is higher among 
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individuals with diabetes. The majority of individuals in the diabetes group appear to have a 

piecewise distribution which remains constant from the 4 to 6 range. On the other hand, the 

healthy group has a strong right-skewed distribution with a gradual increase. This implies that 

the education level is lower for diabetics compared to healthy individuals. Finally, the 

distribution of income for diabetics is uniform while the distribution for healthy patients is 

skewed to the right. This shows that healthy individuals have a higher income scale than the 

diabetic patients. 
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This figure above illustrates the percent differences of binary variables between diabetes status 

(healthy/diabetes). The HighBP (high blood pressure) variable appears to have a significant 

difference with around 15% of diabetics reporting no high blood pressure as opposed to the 25% 

that report high blood pressure. Even though the sizes of each distribution differs due to a greater 

number of healthy individuals, it is evident that diabetics are more likely to report having high 

blood pressure than not. The HighChol (high cholesterol) variable demonstrates a similar trend 

where more diabetics have reported having high cholesterol than not. The CholCheck 

(cholesterol check) variable distribution appears to have more diabetics who have had a 

cholesterol check in five years (15%)  compared to diabetics that haven’t (10%). The smoker 

variable seems to have more diabetics who reported smoking at least 100 cigarettes in their life 

(15%) compared to diabetics that haven’t (10%). The stroke variable distribution displays 30% 

of diabetics who have had a stroke versus 15% that have not had one. The HeartDiseaseorAttack 

binary feature distributions report more diabetics (around 35%) claiming to have had coronary 

heart disease or myocardial infarction while fewer diabetics (15%) have not. The percent 

distribution for the PhysActivity (physical activity) shows that around 20% of diabetics had no 

physical activity in the past 30 days while a mere 10% have. This suggests that more diabetics 

perform less physical activity. For the fruit and veggie consumption distributions, more diabetics 

(15%) have reported not consuming fruits/vegetables one or more times in a day compared to the 

other diabetic individuals who do (10%). The HvyAlcoholConsump (heavy alcohol 

consumption) attribute is observed to have a greater percentage of diabetics (15%) who have not 

had seven to fourteen drinks per week compared to those that do (5%). The AnyHealthcare 

variable appears to have slightly more diabetics (5%) that have any kind of health care coverage 

than those who do not. The NoDocbcCost feature distributions reveal that there is a slight 
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percentage increase (5%) in diabetics who have not seen a doctor in the past twelve months 

because of cost compared to diabetics that have not had this issue. The DiffWalk (difficulty 

walking) attribute reveals that a greater percentage of diabetics (30%) have difficulty walking 

compared to the diabetic individuals that don’t have any difficulty (20%). Finally, the Sex 

variable shows a 5% increase in diabetics in males as opposed to females. 

3. Feature Differences between Males and Females 

We explore the feature differences between males and females in order to identify potential 

features which may contribute to the susceptibilities of diabetes in sex-specific manners. 

 
The figure above shows the distributions of numerical variables in the CDC dataset, segmented 

by sex (male in blue, female in red). The BMI distribution for males and females is similar, 
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peaking around 25-30, but males have a slightly wider spread toward higher BMI values (up to 

90), while females are more concentrated between 20 and 40. For general health (GenHlth), both 

sexes show a similar pattern, with most individuals rating their health between 1 (excellent) and 

3 (good), though females have a slightly higher count in the 2-3 range. Mental health (MentHlth) 

and physical health (PhysHlth) distributions are also comparable between sexes, with most 

individuals reporting 0 days of poor mental or physical health. However, females report slightly 

more days in the 1-10 range for mental health. The age distribution shows males and females 

peaking around age categories 8-10 (55-69 years), but females have a slightly higher count in the 

oldest age group (13, 80+ years). Education levels are similar, with most individuals in both 

groups having a college education (4-6 range), though females have a slightly higher count at the 

highest education level (5,6). Lastly, the income distribution shows both sexes having a 

right-skewed pattern, with most individuals in the lower income brackets (1-5), but males have a 

much higher count in the highest income bracket (8, $75,000 or more). 
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The figure above compares the percentage differences in binary variables between males and 

females within the CDC dataset. For HighBP (high blood pressure), males exhibit a 5% higher 

prevalence than females, indicating a slightly greater tendency among men to be affected by this 

condition. HighChol (high cholesterol) follows a similar trend, with males showing a 4% higher 

incidence than females, suggesting a notable trending difference in cholesterol levels between the 

sexes. In CholCheck (cholesterol check in the past 5 years), males are 10% more likely not to 

have undergone a check than females, pointing to a potential gap in preventive health screening 

practices among men. Smoking (Smoker) shows a significant difference, with males being 10% 

more likely to be smokers than females, reflecting a stronger association of tobacco with male 

demographics. Stroke prevalence shows no difference, with an equal 50% split between males 

and females who have not experienced a stroke, indicating a balanced distribution of this 

condition across sexes. HeartDiseaseorAttack (coronary heart disease or myocardial infarction) 

demonstrates a substantial disparity, with males having a 20% higher prevalence than females, 

underscoring a considerably greater risk of cardiovascular events among men. Physical activity 

(PhysActivity) indicates that males participate 4% more frequently than females, suggesting a 

slight edge in physical engagement among men. For eating fruit habits, females exceed males by 

10%, indicating a notable preference or habit among women for fruit intake. Veggie consumption 

also favors females, who exceed males by 10%, highlighting a stronger inclination toward 

vegetable consumption among women. Heavy alcohol consumption (HvyAlcoholConsum) 

remains nearly equal between males and females, with only a negligible difference, suggesting 

similar drinking patterns across sexes. Anyhealthcare coverage shows females at a 5% higher 

rate than males, implying slightly greater access or utilization of healthcare services among 

women. NoDocbcCost (inability to see a doctor due to cost) is 9% higher among females than 
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males, indicating a greater financial barrier to medical care for women. Lastly, DiffWalk 

(difficulty walking) is 10% higher in females than males, pointing to a more pronounced 

challenge with mobility among women in the dataset. 

4. Feature differences between diabetic patients and healthy controls stratified by 

sex 

Finally, we explored the feature differences between diabetic patients and healthy controls in 

males and females respectively. This exploration enables us to identify the most likely diabetic 

contributors in males and females separately, which can guide us to answer question 2. 
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For the numerical features as shown above, we observed several clear distributional shifts 

between diabetic and non-diabetic groups in both sexes. Body Mass Index (BMI) consistently 

appeared higher among individuals with diabetes, with this difference more pronounced in 

females. Age-related variables also skewed older in the diabetic group, aligning with the 

established association between age and Type 2 diabetes. In females, features such as BMI, 

systolic blood pressure, and cholesterol-related measures displayed tighter and more separated 

distributions across diabetes status, suggesting these features may have stronger predictive power 

in this subgroup. In contrast, these same variables in males often exhibited broader or 

overlapping distributions, potentially limiting their usefulness in male-specific predictive 

models. 

Furthermore, several features displayed non-normal or multimodal distributions—especially 

within the diabetic group—indicating underlying complexity or the presence of subpopulations. 
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These patterns suggest that linear models may be insufficient to capture the full scope of 

associations within the data. Instead, nonlinear approaches such as decision trees, ensemble 

methods (e.g., Random Forests, XGBoost), or neural networks may be more appropriate due to 

their ability to model interactions and non-additive effects. 
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The analysis of categorical variables as shown above, using stacked bar plots, revealed additional 

patterns. Features related to health behavior and access to care—such as physical activity levels, 

general health perception, and frequency of healthcare visits—differed meaningfully between 

diabetic and non-diabetic individuals. These differences were visible in both sexes but again 

tended to be more pronounced among females. For example, a larger proportion of diabetic 
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females reported poor general health, infrequent physical activity, or more frequent mental health 

issues, while non-diabetic females more often reported healthier behaviors and better perceived 

health. In males, while similar trends existed, the distributions were generally flatter, suggesting 

less distinction across diabetes status for many categorical variables. 

These findings suggest that behavioral and perception-based features, especially those captured 

by multi-level categorical variables, may contribute more strongly to diabetes prediction in 

females than in males. The presence of multiple response levels also supports the use of models 

that handle categorical data natively and effectively, without requiring excessive preprocessing 

or one-hot encoding. Tree-based models are particularly advantageous in this context, as they can 

naturally accommodate such complexity. 

Taken together, the exploratory findings from both numerical and categorical variables indicate 

that the contribution of individual features to diabetes prediction is likely to differ between males 

and females, both in magnitude and relevance. This reinforces the importance of building and 

evaluating separate machine learning models for each sex. It also motivates the use of feature 

interpretability tools, such as SHAP values or permutation importance, to identify which 

variables drive predictions in each subgroup. Features that are highly informative in one sex may 

be weak or irrelevant in the other, and failing to account for these differences could compromise 

model accuracy and equity. 

Overall, this exploratory analysis offers critical guidance for model design, feature selection, and 

interpretability in the context of sex-specific diabetes risk modeling. These insights will inform 

the next phase of our work, where we build, train, and evaluate separate machine learning 

models to further investigate and compare feature contributions across sexes.  
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Methodology 

RQ1: Which machine learning model achieves the highest performance, particularly in 

sensitivity, for predicting diabetes using the CDC dataset? 

1. Machine learning methods to be used: 

Logistic Regression: A supervised machine learning algorithm used for classification problems. 

It's a linear model that estimates the log odds of diabetes presence based on input features. It 

requires preprocessing steps such as scaling numerical variables (e.g., BMI, Age) and one-hot 

encoding categorical variables to handle multicollinearity and ensure model stability. 

Random Forest: A machine learning algorithm that uses many decision trees to make better 

predictions. Its ensemble method comprises multiple decision trees, which predict diabetes by 

averaging tree outputs. It uses Gini importance to assess feature impact and employs random 

search cross-validation to tune hyperparameters like the number of trees and the maximum 

depth, accommodating unprocessed data with encoded categoricals. 

Neural Network: A machine learning algorithm that uses many decision trees to make better 

predictions. It is a non-linear model with configurable hidden layers and neurons, optimized via 

backpropagation and learning rate adjustments. Tuning focuses on the number of layers, neuron 

count, and learning rate, with data preprocessed similarly to logistic regression for consistency. 

2. How to compare the performances to identify the outperforming model which will be applied 

in question 2? 
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Models will be trained and evaluated using 10-fold cross-validation, randomly splitting the 

dataset into 10 equal folds, training on nine folds, and testing the remaining fold each iteration to 

prevent overfitting. Performance metrics include: 

Accuracy: The proportion of correct predictions. Accurate positive and true negative are divided 

by the total. 

Sensitivity: The ability to correctly identify diabetic cases, prioritized to minimize false 

negatives given the public health impact of missed diagnoses. True positive is divided by the 

total with the condition. 

Specificity: The proportion of non-diabetic cases correctly identified. True negative divided by 

the total without the condition. 

F1-Score: It provides a balanced measure and harmonic mean of precision and recall. Given the 

dataset's class imbalance (approximately 11% diabetes prevalence per CDC data), we will apply 

SMOTE-NC (Synthetic Minority Oversampling Technique for Numerical and Categorical data) 

to generate synthetic samples for the minority class if needed. The model demonstrating the 

highest sensitivity across the all-sample, male, and female subsets will be selected for RQ2 

analysis. 

 

 

RQ2: What are the key features or factors associated with diabetes that differ between 

male and female patients in the CDC dataset? 

1. How to extract the feature importances from either male or female subset? 
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The original features will be used to build the models, and afterwards, the coefficients/indices 

will be extracted to deduce the importance of each feature and their contribution to predicting 

our binary target variable, diabetes status. The first method we will use is logistic regression. 

This provides log-odds coefficients for each attribute which is used to identify the strength of the 

relationship between a feature and the probability of diabetes in patients. In order to analyze the 

associated features for both genders, we will fit the logistic regression model on male/female 

subsets then extract and compare the log-odds coefficients.  The next machine learning algorithm 

to be used is random forest. This model consists of decision trees that predict diabetes status by 

evaluating various features and splitting the data based on the values that reduce impurity. Gini 

importance indices measure the mean decrease in impurity to measure the importance of an 

attribute. The prediction is made using the overall results of each decision tree to determine 

classification (diabetes/healthy). Two separate models will be used for each gender so that Gini 

importance scores can be compared to find predictive features in males versus females. We will 

utilize random search cross validation by using a random hyperparameter grid in order to 

perform hyperparameter tuning for the random forest model. The last machine learning model 

we will build is a neural network. This method consists of forward propagation which is when 

features are passed through multiple layers (input,hidden,output) where linear transformation 

occurs and is then passed to an activation function to create a non-linear model. Next, 

backpropagation occurs which is when the model learns by comparing the predicted and true 

value by using a loss function with the objective of minimizing the loss. The gradients are then 

computed and used to adjust weights to minimize the loss/error. Finally, the weights are updated 

opposite in direction of the gradient and the process repeats over a number of epochs. We will 

fine tune some hyperparameters such as the number of hidden layers, the number of neurons, and 
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the learning rate. To identify the important features between genders in our neural network 

model, we can use permutation feature importance for each subset and evaluate the performance 

of each model. 

2. How to measure the rank changes of the features between males and females? 

After ranking features by their importance scores in each subset (e.g., highest to lowest 

coefficients for logistic regression, highest to lowest Gini importance indices for random forest, 

or highest to lowest permutation-based importance values for neural networks), we will compute 

the weight change indices as importance differences between the male and female models for 

individual features. For instance, if the BMI importance is 2 for females but 6 for males, the 

importance difference is 4 for BMI. A positive importance difference signifies a feature is more 

associated with males, whereas a negative importance difference signifies a feature is more 

associated with females, which provides insights into sex-specific risk factors.  
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Analysis 

Data preprocessing 

To make sure the data consistency between the follow-up analyses, we built the different 

machine learning models based on the same preprocessing output. After reading in the raw data, 

missing values for the individual features and the target variable were examined with the 

command dat_df.isnull().sum(), and any samples with missing value for any columns were 

removed with the command dat_df.dropna(). Fortunately, this is a very clean dataset without any 

missing value for any feature or target variable. 

The dataset include two types of features, numerical and binary. The numerical features include: 

BMI, GenHlth, MentHlth, PhysHlth, Age, Education and Income. The binary features include: 

HighBP, HighChol, CholCheck, Smoker, Stroke, HeartDiseaseorAttack, PhysActivity, Fruits, 

Veggies, HvyAlcoholConsump, AnyHealthcare, NoDocbcCost, DiffWalk and Sex. To less the 

influences of different ranges from numerical features on follow-up model building and make all 

numerical features be within the same range, all the numerical features were standardized with 

Z-score normalization with the command StandardScaler().fit_transform(dat_df[numVars]), 

whereas the binary features were kept unchanged. Afterwards, the preprocessed output was 

provided as the input for follow-up analyses. 

 
 
 

Model Results 
 

RQ1: Which machine learning model achieves the highest performance, particularly in 

sensitivity, for predicting diabetes using the CDC dataset? 
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 Logistic Regression Random Forest Neural Network 

Accuracy 0.73 0.72 0.71 (0.64) 

Sensitivity 0.77 0.78 0.8 (0.88) 

Specificity 0.73 0.71 0.7 (0.60) 

F1-score 0.44 0.44 0.44 (0.41) 

AUC 0.82 0.82 0.83 

 
 

Q1 Logistic regression 

To address RQ1, a logistic regression model was implemented using a train-test split approach. 

Numerical variables were scaled using StandardScaler, and categorical features were adapted as 

integer arrays. The data was split 70/30, stratified on the target variable, and the class imbalance 

was addressed using class_weight='balanced'.The confusion matrix revealed 47,612 true 

negatives, 17,888 false positives, 2,522 false negatives, and 8,082 true positives, achieving a 

sensitivity of 0.77 in identifying diabetic individuals. The ROC curve confirmed good 

discriminatory power with an AUC of 0.82. Permutation importance analysis showed GenHlth 

(0.0591), BMI (0.0278), and Age (0.0336) as top predictors.An odds ratio analysis further 

clarified the direction and strength of associations between features and diabetes risk. Notably, 

GenHlth had the highest odds ratio (1.86), followed by BMI (1.62), Age (1.58), HighBP (1.44), 

and HighChol (1.33), suggesting individuals with poor general health, higher BMI, older age, or 

high blood pressure/cholesterol have significantly increased odds of having diabetes. Factors 

with protective capability that reduced the diabetic risk included higher income (0.89), higher 

education (0.96), and heavy alcohol consumption (0.84), though the latter may reflect behavioral 

confounding rather than causation. The Sex with an odd ratio of (1.15) indicates a slight increase 
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in diabetes risk in males, laying the groundwork for further gender-specific analysis in RQ2. 

These odds ratios support highlighting key risk factors driving true positive identifications.These 

findings confirm that logistic regression performs well in identifying at-risk patients with a 

sensitivity that meets public health goals. The model’s consistent performance on the test set 

supports H1 and sets a benchmark for comparing more complex models in future work. 

 

 

Q1 Random forest 

For the random forest classifier, a train test split approach was used along with balanced weights. 

The balanced weights helped counteract the effect of the imbalanced nature of the data set (most 

people do not have diabetes). To optimize the random forest, a grid optimization approach was 

used. Grid search was used to tune the hyper-parameters and optimized for recall. Using this 

method, we tuned the model and found that the best parameters for our purposes:   ​  

 

The accuracy score for diabetes predictions using this random forest classifier model was .72. 

This means that the model was correctly predicting diabetes 72% of the time (total of correct 

predictions/total number of predictions). The random forest model has a lower accuracy score 

than the logistic regression model we were using as a baseline. The random forest classifier had a 
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sensitivity/recall of .78. This implies that it has a relatively low number of false negatives. The 

specificity was .71. This means that the true negatives are relatively high. Unfortunately, the 

F1-score is merely .44, which is unfortunately low, but the other models performed similarly on 

this metric. Finally, the AUC of the ROC of the random forest model was .82 which shows good 

discriminatory power. 

For feature importance, we used permutation tests. This revealed that, for the random forest 

classifier, the top predictors were: General Health (.041), Age (.024), and High Blood Pressure 

(.022).  

 

Q1 Neural network 

The neural network model was implemented on the male and female superset using an 80/20 

split while maintaining the target variable’s distribution. Balanced weights were used to handle 

the imbalanced dataset since the majority of our data contained healthy individuals. The 

confusion matrix in Appendix C shows 31,313 true negatives, 12,308 false positives, 1,554 false 

negatives, and 5,561 true positives. A low number of false negatives allows for a high sensitivity 

for the superset model to correctly detect diabetic patients.  

Now, our main priority is to maximize sensitivity since it is crucial in correctly identifying 

diabetes patients (true positive). The Neural Network model provided the best result in terms of 

sensitivity (0.80). In this case, the Neural Network model correctly detects 80% of all diabetic 

patients. The specificity of the Neural Network model is the lowest (0.70) compared to the other 

two models for detecting healthy patients (true negative). This means a greater likelihood for the 

Neural Network model to misclassify healthy individuals as diabetics (false positive). Even 

though this may be the case, it would be an acceptable trade-off to misclassify healthy 
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individuals (false positive) instead of diabetic individuals (false negative). The F1-score is 

maintained at a low score of 0.44 for all models. Additionally, the Neural Network model 

contains the highest AUC score of the ROC is (0.83) which means a better overall ability for the 

model to classify between diabetic and healthy patients.  

To find baseline important features in the overall neural network model, we used the permutation 

feature importance technique. The outcome of this analysis revealed that the top predictors from 

the male and female superset neural network model were GenHlth(0.054), BMI(0.040), and 

Age(0.035).  

 

RQ2: What are the key features or factors associated with diabetes that differ between 

male and female patients in the CDC dataset? 

The two tables below display the performance results from the male and female subset models 

for Logistic Regression, Random Forest, and Neural Network. 

Performance measures in the male subset: 

 

 Logistic Regression Random Forest Neural Network 

Accuracy 0.72 0.71 0.60 

Sensitivity 0.76 0.76 0.89 

Specificity 0.71 0.70 0.55 

F1-score 0.45 0.44 0.40 

AUC 0.81 0.80 0.81 

 



42 

Performance measures in the female subset: 

 

 

 Logistic Regression Random Forest Neural Network 

Accuracy 0.75 0.72 0.67 

Sensitivity 0.77 0.79 0.87 

Specificity 0.74 0.71 0.64 

F1-score 0.43 0.43 0.41 

AUC 0.83 .83 0.84 

 

Q2 Logistic regression 

For RQ2, the logistic regression model was applied separately to male and female subsets to 

investigate gender-specific robustness and feature variations. Performance metrics revealed : 

Male Performance: Sensitivity = 0.759, AUC = 0.810 

Female Performance: Sensitivity = 0.766, AUC = 0.830 

indicating a slightly higher discriminatory power for females. The importance of permutation 

analysis highlighted distinct gender differences, with BMI and HighBP being more influential for 

females and age-dominant for males. The difference in permutation importance scores (male - 

female): Age showed a significant increase (+0.036) for males, while BMI decreased (-0.013) for 

males, indicating greater relevance for females. High Blood Pressure and High Cholesterol were 

also more impactful for females, whereas smoking status exhibited a negative importance for 

males, possibly due to interactions with other health behaviors. Odds ratio analysis further 

elucidated these patterns: for males, Age (OR = 1.58) and GenHlth (OR = 1.86) were the most 

significant, linking older age and poor general health to higher diabetes risk; for females, BMI 
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(OR = 1.62) and HighBP (OR = 1.44) were key, emphasizing the roles of body mass index and 

hypertension. The odds ratios observed are consistent with the variations in permutation 

importance; these results support Hypothesis 2 (H2), demonstrating that males and females 

exhibit distinct patterns of diabetes risk factors. While logistic regression contributed valuable 

results, its linear nature may overlook non-linear relationships identified during exploratory data 

analysis (EDA). Future studies could employ tree-based or neural network models to capture 

these complexities. 

 

 

Q2 Random forest 

Having split the dataset into male and female subsets, we used the random forest classifier model 

on each one to determine differences between male and female diabetes patients. Afterwards, we 

performed feature importance analysis again to identify which features have more or less 

predictive power between sexes. 

Male Performance Metrics (Random Forest): Sensitivity = 0.76, AUC = 0.80 

Female Performance Metrics (Random Forest): Sensitivity = 0.79, AUC = .83 

The permutation tests for feature importance revealed that age and general health score were 

more important for males and that BMI and high blood pressure was more important for females 

when it comes to predicting diabetes performance using the random forest model. 

The random forest model’s male-female subset analysis revealed that there are substantial 

differences between diabetes predictive ability within the model (at least in terms of recall). 
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Additionally, the feature importance permutation analysis confirms that there are differences 

between importance of particular features between male and female patients. The random forest 

provides a baseline of differences between sexes that may be expanded upon during the neural 

net analysis. 

 

Q2 Neural network 

Two separate neural network models have been created for male and female subsets. Each model 

contains an 80/20 split where the proportion of classes in the training and test sets stay the same. 

To handle class imbalance, the parameter class_weight=’balanced’ is used for equal optimization 

in both classes. The confusion matrices for the male model and female model in Appendix F 

show a similar amount of false positives. The female model contains more true negatives and 

true positives which means that there are more diabetes/healthy female samples in the data. The 

male model has less false negatives than the female model which induces a better recall. 

 

Male Performance: Sensitivity = 0.89, AUC = 0.81 

Female Performance: Sensitivity = 0.87, AUC = 0.84 

 

The neural network model for the male subset produces the lowest accuracy but highest 

sensitivity value across all models. This means that this model correctly detects 89% of all 

diabetic patients in the male subset. Similar to the male and female neural network model, the 

male model has the smallest specificity (0.55) compared to the other two male subset models 

which means the model misclassifies 45% of healthy individuals as diabetic (false positives).  
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Among the three male models, both the neural network and logistic regression models have the 

same AUC score of 0.81. Therefore, both the neural network and logistic regression models have 

similar classification abilities. As for the female subset model, it carries the smallest accuracy 

and F1-score. However, this model accurately identifies 87% of all diabetic patients in the male 

subset. This female model also has the lowest specificity (0.64) compared to the logistic 

regression and random forest female models, meaning it misclassified 36% of healthy patients as 

diabetic (false positives). Lastly, the neural network female model holds the highest AUC score 

(0.84) compared to the logistic regression and random forest female subset models which leads 

to a more favorable classification performance. 

Finally, we applied permutation feature importance to each male and female subset neural 

network model to extract and compare their top predictors. The difference between the top 

predictors for the male and female subset models show that Age is a significantly strong 

predictor for males while BMI, HighBP, and HighChol was found to be more important for 

females. Overall, the performance of the male and female neural network models showed slight 

differences in recall between the two gender models, but displayed a notable difference when 

compared to the male and female superset model. The important predictors of the male model 

(Appendix K) and female model (Appendix L) proves that there are differences in the features 

associated with diabetes for male and female patients. In the end, the neural network model 

outperformed the logistic regression and random forest models based on its performance metrics 

for all subsets of the diabetes data. 

 

Conclusion  
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After building logistic regression, random forest and neural network models from the male and 

female subsets, computing feature importance measures, and comparing the feature importance 

measures between males and females to generate the feature importance change index by 

subtracting the female importance measure from male importance measure for any given feature, 

we compiled a feature importance change index heatmap for the three models after sorting the 

averaged feature importance change indices from high to low.  
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Data Visualization 

RQ1: Which machine learning model achieves the highest performance, particularly in 

sensitivity, for predicting diabetes using the CDC dataset? 

We compared the performances of three machine learning models (Logistic regression, random 

forest and neural network) in terms of accuracy, sensitivity, specificity, and F1-score. We 

prioritize sensitivity because these are disease prediction models, and we don’t want the models 

to miss too many diabetic patients to delay their treatments. Below is a table summarizing the 

performance metrics between the three models. The neural network outperforms the other two 

models in terms of sensitivity. The accuracy of the neural network is lower than those of the 

other two models due to its higher probability of misclassifying healthy controls as diabetic 

patients (lower specificity). Nevertheless, these misclassifications do not harm the healthy 

controls and even encourage them to live healthier lives to avoid the occurrence of diabetes. 

 

 Logistic Regression Random Forest Neural Network 

Accuracy 0.73 0.72 0.71 (0.64) 

Sensitivity 0.77 0.78 0.8 (0.88) 

Specificity 0.73 0.71 0.7 (0.60) 

F1-score 0.44 0.44 0.44 (0.41) 

AUC 0.82 0.82 0.83 
 
Then, we compared the areas under the curve (AUC) derived from the receiver operating 

characteristic (ROC) between the three models. Because ROC runs false positive rate (the rate of 

misclassifying healthy controls as diabetic patients) against true positive rate (the rate of 

correctly identifying diabetic patients), it can show the overall performance and identify the 
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model with the best trade-off. The following graphs are the ROC curves for the three models, 

respectively. For the confusion matrices of the three models, please refer to Appendices A-C. 

ROC curve for Logistic Regression: 

 

 
 
In addition, we also generated a table for the odds ratios of the features in Logistic regression: 
 

Feature Odds ratio Feature Odds ratio Feature Odds ratio 

HighBP 1.44 PhysActivity 0.98 MentHlth 0.97 

HighChol 1.33 Fruits 0.97 PhysHlth 0.94 

CholCheck 1.28 Veggies 0.98 DiffWalk 1.04 

BMI 1.62 HvyAlcoholCo
nsump 

0.84 Age 1.58 

Smoker 1 AnyHealthcare 1.02 Education 0.96 

Stroke 1.03 NoDocbcCost 1.01 Income 0.89 

HeartDiseaseorAttack 1.08 GenHlth 1.86 Sex 1.15 
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ROC curve for Random Forest: 

 
Parameters for Random Forest:  (Used Hyperparameter Grid Search): 
{'class_weight': 'balanced', 'max_depth': 5, 'max_features': 'log2', 

'min_samples_split': 20, 'n_estimators': 200} 

 

ROC curve for Neural Network: 
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AUC values derived from these ROCs were also listed in the table above. The neural network 

outperforms the other two models and shows the best overall performance in terms of AUC. 

The neural network model outperformed the other two models in terms of the key measure of 

sensitivity and the overall performance. Therefore, we will pay more attention to the outcomes 

from the neural network in the second question in this project. 

 

 

 

RQ2: What are the key features or factors associated with diabetes that differ between 

male and female patients in the CDC dataset? 

Before identifying which features are more associated to male or female diabetic patients, we 

compared the model performances in male and female subsets separately. 

Performance measures in the male subset: 

 

 Logistic Regression Random Forest Neural Network 

Accuracy 0.72 0.71 0.60 

Sensitivity 0.76 0.76 0.89 

Specificity 0.71 0.70 0.55 

F1-score 0.45 0.44 0.40 

AUC 0.81 0.80 0.81 

 



51 

Performance measures in the female subset: 

 

 Logistic Regression Random Forest Neural Network 

Accuracy 0.75 .72 0.67 

Sensitivity 0.77 .79 0.87 

Specificity 0.74 .71 0.64 

F1-score 0.43 .43 0.41 

AUC 0.83 .83 0.84 

 

The following graphs are the ROC curves for the three models in the male and female subsets, 

respectively. For the confusion matrices of the three models, please refer to Appendices D-F. 

 

 

ROC curves from male and female subsets for Logistic regression: 
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ROC curves from male and female subsets for random forest: 

 

ROC curves from male and female subsets for neural network: 
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To assess which features contribute most to diabetes classification in males and females from the 

three models, we used permutation importance evaluated by the changes in AUC derived from 

ROC. This method reveals the drop in model performance when a feature’s values are randomly 

shuffled, indicating how much the model relies on that feature. For the ranked bar plots of the 

permutation feature importance scores from either male or female subset for the three models, 

please refer to Appendices G-L. Then, we compared the change of importance score for each 

feature by subtracting the score of female from the score of male to get the following plots for 

the three models, respectively. 

Logistic regression: 
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Random forest: 

 

Neural network: 
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Finally, we integrated the male-female importance difference measures across the three models 

into one heatmap: 
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From the results of the changes of importance scores: 

●​ Age was significantly more important in males than in females, showing an increase in 

importance scores for both Logistic regression and neural network. This suggests that 

age-related risk patterns for diabetes are more predictive among men.​

 

●​ Conversely, BMI was more predictive in females across the three applied models. This 

could reflect different physiological or behavioral responses to weight between the sexes.​

 

●​ High Blood Pressure and High Cholesterol were also more important for predicting 

diabetes in females than in males.​

 

●​ Interestingly, some features, such as stroke and smoker, show discrepant associations 

with either male or female, possibly due to their weak effects or interactions with other 

health behaviors.​

 

●​ Other factors like General Health, Income, and Alcohol Consumption had similar but 

low-to-moderate contributions across sexes.​

 

These findings support the need for sex-specific risk models, as feature importance varies 

between males and females. Visualizing these differences helps clinicians and model developers 

tailor predictions and interventions accordingly. 
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Ethical Recommendations 

The application of Machine learning methods in diabetes risk prediction enhances early detection 

and targeted intervention in the general public health. However, in the meantime, it also 

introduces ethical problems, which may include but are not limited to fairness, privacy, 

transparency, and responsible use of all different aspects. According to Quinn (2020, Chapter 1), 

ethical decision-making in data science requires prioritizing individual well-being and societal 

values, especially in health-related applications. The following analysis applies the project with 

five major ethical theories, Kantianism, act utilitarianism, rule utilitarianism, social contract 

theory, and virtue ethics, to pursue ethical practices. 

Under the Fairness and Algorithmic Bias consideration, biased datasets can result in 

misdiagnosis for underrepresented populations. In our case, unequal sampling may reduce model 

accuracy for certain ethnic or socioeconomic groups. Social contract theory emphasizes mutual 

benefit and equitable treatment (Quinn, 2020, Chapter 2). To uphold fairness, stratified sampling 

and subgroup validation can be used to ensure the model serves all demographics properly. Rule 

utilitarianism supports adopting general rules, like bias audits and transparency guidelines, that 

increase overall happiness and justice when universally applied. 

Model Transparency: Healthcare models must be interpretable to respect individuals’ rational 

autonomy (Quinn, 2020, Chapter 2.6). Kantian ethics demands that individuals be treated as ends 

in themselves, not merely as means. Logistic regression, used as a comparison method with other 

ML methods in this project, supports this principle through interpretability and clarity. 

Transparent explanations in the technology method we are using empower patients and providers 

to make informed decisions, reinforcing public trust and understanding. 
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Privacy and Responsible Data Stewardship: Using publicly available health data still requires 

ethical safeguards. Quinn (2020, Chapter 7) emphasizes informed consent and confidentiality. 

Under social contract theory, data users are obliged to honor mutual rights, including privacy. 

Virtue ethics also requires that data scientists act with integrity, protecting participant identities 

even when not legally mandated. 

Avoiding Misuse of Statistics: Practices like p-hacking or overfitting for better metrics may yield 

misleading results. According to act utilitarianism, such actions are unethical if the harms (e.g., 

misdiagnoses) outweigh the benefits (e.g., improved test accuracy). Kantianism also condemns 

manipulation that treats patients as mere data points. Instead, developers must ensure honest 

reporting, proper cross-validation, and transparency to promote the collective good. 

Human Autonomy and Decision Support: Predictive models should assist, not replace, human 

independent judgment. Quinn (2020, Chapter 2.10) states that virtue ethics emphasizes acting 

with wisdom and compassion. Kantianism reinforces that people must never be used solely as 

tools. Therefore, models should be solely used to help human beings improve efficiency and 

accuracy, and encourage shared decision-making between patients and clinicians. 

Conclusion: 

Using ethical theories like Kantianism, utilitarianism, social contract theory, and virtue ethics to 

guide this project ensures that this diabetes prediction project meets ethical integrity. Each theory 

contributes a unique lens: rights (Kantianism), consequences (utilitarianism), fairness (social 

contract theory), and moral character (virtue ethics). The ethical goal is to empower patients, 

improve care equity, and respect human dignity while advancing health technology responsibly. 
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Challenges 

When we were training the models, due to the imbalanced sample sizes between diabetic patients 

and healthy controls (13.93% diabetes v.s. 86.07% healthy controls), the models were not able to 

reach an ideal sensitivity, which is the prioritized performance measure in this project, because 

the sample size of diabetic patients is much less than the sample size of healthy controls, and the 

models are less likely to recognize the true positive than to recognize the true negative 

consequently. To resolve this issue, we applied cost-sensitive learning, or a balanced weight, to 

adjust the models to be more sensitive to recognizing diabetic patients than healthy controls. 

Technically, diabetic patients were assigned a higher class weight and healthy controls a lower 

class weight in model training. With cost-sensitive learning, the models were able to reach an 

ideal sensitivity, especially for the neural network (~90%). 

Another challenge in the project is the imbalanced sample sizes between the sexes (44.03% 

males v.s. 55.97% females). One issue brought about by this imbalance is the discrepant model 

performance measures between the male and female subsets. The performance measures from 

the female subset are better than the performance measures from the male subset due to the 

larger sample size. To resolve this issue, we downsampled the female subset to make it almost 

the same size as the sample size of the male subset. After downsampling, the discrepancy 

between the performance measures of the male and female subsets is significantly reduced. 
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Recommendations 

The neural network is the outperforming model among the three models (logistic regression, 

random forest and neural network) we built which can correctly classify true diabetic patients 

with the highest sensitivity (~90%). However, there is still room to improve the model (~10%). 

We used a relatively simple neural network model with two hidden layers and a low number of 

neurons (16 neurons for one hidden layer and 8 neurons for the other) because a complex neural 

network model is time-consuming and our project is time-limited. This simple model may not be 

competent to fully capture the characteristics from the large samples because we have a large 

total sample size (253,680) relative to a small number of neurons. Therefore, this reminds us to 

wonder whether increasing the number of hidden layers and the number of neurons of the hidden 

layers will be able to further increase its sensitivity? If it is, how much sensitivity can be 

increased? This is an interesting question to explore but needs more time and may need a 

computer with higher capability, such as a computing cluster. 

In this project, we divided the samples into the male and female subsets to explore their 

respective most important features which are associated with the occurrence of diabetes. It is 

intriguing to consider whether further subdividing the male and female subsets will change the 

importance measures of the original male and female subsets. For example, if we subdivide the 

male samples to smoking males and non-smoking males based on the smoker feature, whether 

the feature importances of either smoking males or non-smoking males will be different than the 

feature importances of males with smoking and non-smoking status combined. The same thought 

can be extended to other features in the dataset. However, such subdividing analysis should be 

taken with caution because the sample size for a certain level of a feature may not guarantee such 
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analysis. For example, smoking female samples may comprise only a very small proportion of 

the total samples. 

This dataset includes several disease-related features, such as high blood pressure, high 

cholesterol and heart disease. From the heatmap from data visualization, it can be observed that 

high blood pressure and high cholesterol are more associated with females to develop diabetes, 

whereas coronary heart disease is more associated with males to develop diabetes. However, we 

cannot say that a female with high blood pressure or high cholesterol is more likely to develop 

diabetes, and a male with coronary heart disease is more likely to develop diabetes. The reason 

behind this argument is because our machine learning models only provide us with the 

associations between the features with diabetes but they are not necessarily the causes. We are 

not sure whether a person with high blood pressure is more likely to develop diabetes, or a 

diabetic person is more likely to develop to high blood pressure. This brought us some ideas on 

whether we can leverage data to disentangle the cause-result relationships between diabetes and 

the other disease-related features. 
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Appendix 

Appendix A. Confusion matrix for Logistic Regression 

 
Appendix B. Confusion Matrix for Random Forest 
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Appendix C. Confusion Matrix for Neural Network 

 
 

Appendix D. Confusion matrices from male and female subsets for Logistic regression 
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Appendix E. Confusion matrices from male and female subsets for random forest 

 

Appendix F. Confusion matrices from male and female subsets for neural network 
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Appendix G. Ranked bar plot of the permutation feature importance score from the male subset 

for Logistic regression 

 

 

Appendix H. Ranked bar plot of the permutation feature importance score from the female 

subset for Logistic regression 
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​

Appendix I. Ranked bar plot of the permutation feature importance score from the male subset 

for random forest 

 

 

Appendix J. Ranked bar plot of the permutation feature importance score from the female subset 

for random forest 
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Appendix K. Ranked bar plot of the permutation feature importance score from the male subset 

for neural network 

 

Appendix L. Ranked bar plot of the permutation feature importance score from the female 

subset for neural network 
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Code 

1.​ Preprocessing 

Jaccard Similarity: 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

import statistics 

from sklearn.compose import ColumnTransformer 

from sklearn.preprocessing import OneHotEncoder 

from sklearn.pipeline import Pipeline 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import train_test_split, RandomizedSearchCV 

#from keras.datasets import fashion_mnist 

from sklearn.inspection import permutation_importance 

from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, 

roc_curve, auc 
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from sklearn.metrics import accuracy_score, precision_score, ConfusionMatrixDisplay, 

recall_score, f1_score 

from sklearn.decomposition import PCA 

import plotly.express as px 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import GridSearchCV 

from imblearn.pipeline import Pipeline 

from imblearn.over_sampling import SMOTE, SMOTENC 

 

dat_df = pd.read_csv("diabetes_binary_health_indicators_BRFSS2015.csv", header=0, 

na_values='?', skipinitialspace=True) 

#df.columns = ["Column A", "Column B"] 

#numerical variable 

numVars = ['BMI','GenHlth','MentHlth','PhysHlth','Age','Education','Income'] 

catVars = [x for x in dat_df.columns if x not in numVars] 

dat_df 
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#scale numerical variables Z-score transformation 

scaler = StandardScaler() 

scaled_dat_df = dat_df.copy() 

scaled_dat_df[numVars] = scaler.fit_transform(dat_df[numVars]) 

 

 

#Separates Binary and Non-binary columns from dataframe 

 

def create_binary_dataframe(df): 

    binary_columns = [] 

    for column in df.columns: 

        if df[column].isin([0, 1]).all(): 

            binary_columns.append(column) 

 

    if binary_columns: 

        return df[binary_columns].copy() 

    else: 
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        return pd.DataFrame() # Return an empty DataFrame if no binary columns 

 

binary_df_diabetes = create_binary_dataframe(scaled_dat_df) 

 

def create_nonbinary_dataframe(df): 

    nonbinary_columns = [] 

    for column in df.columns: 

        if not df[column].isin([0, 1]).all(): 

            nonbinary_columns.append(column) 

 

    if nonbinary_columns: 

        return df[nonbinary_columns].copy() 

    else: 

        return pd.DataFrame() # Return an empty DataFrame if no binary columns 

nonbinary_df_diabetes = create_nonbinary_dataframe(scaled_dat_df) 

print(nonbinary_df_diabetes) 
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def jaccard_similarity(col1, col2): 

    intersection = np.logical_and(col1, col2).sum() 

    union = np.logical_or(col1, col2).sum() 

    return intersection / union if union > 0 else 0 

 

def jaccard_similarity_matrix(df): 

    num_cols = len(df.columns) 

    similarity_matrix = pd.DataFrame(index=df.columns, columns=df.columns) 

 

    for i in range(num_cols): 

        for j in range(i, num_cols): 

            col1 = df.iloc[:, i] 

            col2 = df.iloc[:, j] 

            similarity = jaccard_similarity(col1, col2) 

            similarity_matrix.iloc[i, j] = similarity 

            similarity_matrix.iloc[j, i] = similarity # Matrix is symmetric 

    return similarity_matrix 
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df = pd.DataFrame(binary_df_diabetes) 

similarity_matrix = jaccard_similarity_matrix(binary_df_diabetes) 

print(similarity_matrix) 

 

similarity_matrix = similarity_matrix[similarity_matrix.columns].astype(float) 

 

#Plotting Jaccard Similarity Matrix 

fig, ax = plt.subplots(figsize=(12,12))  

 

sns.heatmap(similarity_matrix, annot=True, cmap="viridis", linewidths=.5)  

plt.title("Heatmap of Jaccard Similarities of Binary Features", fontsize = 20) 

plt.show() 
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Pearson Correlation Matrix: 

pearson_correlation_matrix_diabetes = nonbinary_df_diabetes.corr() 

print(pearson_correlation_matrix_diabetes) 

 

fig, ax = plt.subplots(figsize=(12,12))  

 

sns.heatmap(pearson_correlation_matrix_diabetes, annot=True, cmap="magma", 

linewidths=.5)  

plt.title("Pearson Correlation Heatmap of (Scaled) Integer Features", fontsize = 18) 

plt.show() 

 

2.​ Q1 

2.1. Logistic regression 

import numpy as np 

import pandas as pd 

from sklearn.linear_model import LogisticRegression 

from sklearn.preprocessing import StandardScaler 
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from sklearn.model_selection import train_test_split 

from sklearn.metrics import confusion_matrix, roc_curve, auc, accuracy_score, 

precision_score, recall_score, f1_score, ConfusionMatrixDisplay 

from sklearn.inspection import permutation_importance 

from sklearn.utils import class_weight 

import matplotlib.pyplot as plt 

import matplotlib.ticker as mticker 

import seaborn as sns 

from wordcloud import WordCloud 

 

# Select features and target 

features = ['HighBP', 'HighChol', 'CholCheck', 'BMI', 'Smoker', 'Stroke', 

'HeartDiseaseorAttack', 

            'PhysActivity', 'Fruits', 'Veggies', 'HvyAlcoholConsump', 'AnyHealthcare', 

            'NoDocbcCost', 'GenHlth', 'MentHlth', 'PhysHlth', 'DiffWalk', 'Age', 

            'Education', 'Income']  # For male/female subsets (RQ2) 
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features_with_sex = ['HighBP', 'HighChol', 'CholCheck', 'BMI', 'Smoker', 'Stroke', 

'HeartDiseaseorAttack', 

            'PhysActivity', 'Fruits', 'Veggies', 'HvyAlcoholConsump', 'AnyHealthcare', 

            'NoDocbcCost', 'GenHlth', 'MentHlth', 'PhysHlth', 'DiffWalk', 'Age', 

            'Education', 'Income', 'Sex']  # For RQ1 (includes 'Sex')  # 'Sex' added for RQ1 

X = scaled_dat_df[features] 

y = scaled_dat_df['Diabetes_binary'] 

gender = scaled_dat_df['Sex']  # 0 = Female, 1 = Male 

 

# Split data by gender 

male_idx = gender == 1 

female_idx = gender == 0 

X_male, y_male = X[male_idx], y[male_idx] 

X_female, y_female = X[female_idx], y[female_idx] 

 

# Scale features 

scaler = StandardScaler() 
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X_scaled = scaler.fit_transform(X) 

X_male_scaled = scaler.fit_transform(X_male) 

X_female_scaled = scaler.fit_transform(X_female) 

 

# Define features and target 

X_rq1 = scaled_dat_df[features_with_sex] 

y = scaled_dat_df['Diabetes_binary'] 

 

# 70/30 Train-Test Split (Stratified) 

X_train, X_test, y_train, y_test = train_test_split( 

    X_rq1, y, test_size=0.3, random_state=42, stratify=y 

) 

 

# Scale numeric features (fit only on training data) 

scaler = StandardScaler() 

X_train_scaled = scaler.fit_transform(X_train) 

X_test_scaled = scaler.transform(X_test) 
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# Logistic Regression model 

log_reg = LogisticRegression(class_weight='balanced', max_iter=1000) 

log_reg.fit(X_train_scaled, y_train) 

 

# Predict on test set 

y_pred_test = log_reg.predict(X_test_scaled) 

 

# Confusion Matrix and ROC/AUC 

cm_overall = confusion_matrix(y_test, y_pred_test) 

fpr_overall, tpr_overall, _ = roc_curve(y_test, log_reg.predict_proba(X_test_scaled)[:, 

1]) 

auc_overall = auc(fpr_overall, tpr_overall) 

 

# Odds Ratios 

odds_ratios = np.exp(log_reg.coef_[0]) 

features_rq1 = features_with_sex 
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# Calculate odds ratios and 95% confidence intervals 

import statsmodels.api as sm 

 

# Refit logistic regression model using statsmodels for detailed summary 

X_sm = sm.add_constant(X_rq1_scaled)  # Add intercept 

model_sm = sm.Logit(y, X_sm).fit(disp=False) 

# ROC Curve for Overall 

plt.figure(figsize=(10, 6)) 

plt.plot(fpr_overall, tpr_overall, label=f'Overall (AUC = {auc_overall:.2f})', color='blue') 

plt.plot([0, 1], [0, 1], 'k--') 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('Overall ROC Curves for Logistic Regression') 

plt.legend() 

plt.show() 

 

# Get odds ratios and confidence intervals 
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odds_ratios = np.exp(model_sm.params) 

conf = model_sm.conf_int() 

conf.columns = ['2.5%', '97.5%'] 

conf_exp = np.exp(conf) 

 

# Combine into a single table 

odds_table = pd.DataFrame({ 

    'Feature': ['Intercept'] + features_rq1, 

    'Odds Ratio': odds_ratios.round(4), 

    'CI Lower (2.5%)': conf_exp['2.5%'].round(4), 

    'CI Upper (97.5%)': conf_exp['97.5%'].round(4) 

}) 

 

print("\nOdds Ratios for Logistic Regression (Overall with Sex):") 

print(odds_table.to_string(index=False)) 

# Permutation importance for overall model 
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perm_importance_overall = permutation_importance(log_reg, X_rq1_scaled, y, 

scoring='roc_auc', random_state=42, n_repeats=10) 

importance_overall = perm_importance_overall.importances_mean 

std_overall = perm_importance_overall.importances_std 

import matplotlib.pyplot as plt 

from sklearn.metrics import ConfusionMatrixDisplay 

 

# Overall Confusion Matrix Plot 

fig, ax = plt.subplots() 

disp_overall = ConfusionMatrixDisplay(confusion_matrix=cm_overall, 

display_labels=[0, 1]) 

disp_overall.plot(ax=ax, values_format='d', cmap='viridis', colorbar=True) 

ax.set_title("Confusion Matrix - Overall - Logistic regression") 

ax.set_xticklabels(['Predicted Negative', 'Predicted Positive']) 

ax.set_yticklabels(['True Negative', 'True Positive']) 

plt.show() 
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2.2. Random forest 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

import statistics 

from sklearn.compose import ColumnTransformer 

from sklearn.preprocessing import OneHotEncoder 

from sklearn.pipeline import Pipeline 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import train_test_split 

import tensorflow as tf 

#from keras.datasets import fashion_mnist 

from tensorflow.keras import layers 

from sklearn.inspection import permutation_importance 
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from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, 

roc_curve, auc, recall_score 

from sklearn.metrics import accuracy_score, confusion_matrix, f1_score 

from sklearn.decomposition import PCA 

import plotly.express as px 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import GridSearchCV 

 

           #Overall Data 

dat_df = pd.read_csv("diabetes_binary_health_indicators_BRFSS2015.csv", header=0, 

na_values='?', skipinitialspace=True) 

#df.columns = ["Column A", "Column B"] 

#numerical variable 

numVars = ['BMI','GenHlth','MentHlth','PhysHlth','Age','Education','Income'] 

catVars = [x for x in dat_df.columns if x not in numVars] 

dat_df = dat_df.dropna() 

scaler = StandardScaler() 
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scaled_dat_df = dat_df.copy() 

scaled_dat_df[numVars] = scaler.fit_transform(dat_df[numVars]) 

#Male and Female superset 

X = scaled_dat_df.drop('Diabetes_binary', axis=1) 

y = scaled_dat_df['Diabetes_binary'] 

 

#Overall Random Forest Model 

rf_model_grid_combined = rf_model_grid.fit(X_train, y_train) 

y_pred_combined = rf_model_grid_combined.predict(X_test) 

 

accuracy_combined = accuracy_score(y_test, y_pred_combined)  

print(accuracy_combined) 

 

 

#Important combined features 

from sklearn.inspection import permutation_importance 

from sklearn.metrics import get_scorer 
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from scikeras.wrappers import KerasClassifier 

 

def scorer(model, X, y): 

    y_pred = model.predict(X) 

    return roc_auc_score(y, y_pred) 

 

perm = permutation_importance(rf_model_grid_combined, X_test, y_test, n_repeats=3, 

                                random_state=0, scoring=scorer) 

 

importance = pd.DataFrame({'Feature': X_train.columns, 

                          'Importance': perm["importances_mean"], 

                          'Standard Deviation': perm["importances_std"]}) 

 

combined_importance = importance.sort_values('Importance',ascending=False) 

 

 

print(importance[['Feature','Importance','Standard Deviation']].to_string(index=False)) 
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#Graphing Feature Importance 

combined_importance.plot(figsize=(15,5),x='Feature',y='Importance',kind="bar",yerr='St

andard Deviation') 

plt.title("Permutation Feature Importance (Overall)") 

plt.ylabel("ROC AUC Performance Drop") 

plt.xticks(rotation=45) 

plt.savefig("Permutation Feature Importance of Random Forest (Overall)", dpi = 300) 

plt.show() 

from sklearn import metrics 

actual_combined = np.random.binomial(1,.9,size = 1000) 

predicted_combined = np.random.binomial(1,.9,size = 1000) 

 

confusion_matrix_combined = metrics.confusion_matrix(y_test, y_pred) 

 

cm_display_combined = metrics.ConfusionMatrixDisplay(confusion_matrix = 

confusion_matrix_combined, display_labels = [0, 1]) 
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cm_display_combined.plot() 

plt.title("Confusion Matrix of Random Forest (Overall)") 

plt.savefig("Confusion Matrix of Random Forest (Overall)", dpi = 300) 

plt.show() 

 

           2.3. Neural network 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

import statistics 

from sklearn.compose import ColumnTransformer 

from sklearn.preprocessing import OneHotEncoder 

from sklearn.pipeline import Pipeline 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import train_test_split 



89 

import tensorflow as tf 

from tensorflow.keras import layers 

from sklearn.inspection import permutation_importance 

from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, 

roc_curve, auc 

from sklearn.metrics import accuracy_score 

from sklearn.decomposition import PCA 

import plotly.express as px 

dat_df = pd.read_csv("diabetes_binary_health_indicators_BRFSS2015.csv", header=0, 

na_values='?', skipinitialspace=True) 

 

#numerical variables 

numVars = ['BMI','GenHlth','MentHlth','PhysHlth','Age','Education','Income'] 

 

#categorical variables 

catVars = [x for x in dat_df.columns if x not in numVars] 

dat_df = dat_df.dropna() 
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#scale numerical variables Z-score transformation 

scaler = StandardScaler() 

scaled_dat_df = dat_df.copy() 

scaled_dat_df[numVars] = scaler.fit_transform(dat_df[numVars]) 

#Male and Female superset 

X = scaled_dat_df.drop(['Diabetes_binary','Sex'], axis=1) 

y = scaled_dat_df['Diabetes_binary'] 

#Overall Neural Network Model 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123) 

mf_model = tf.keras.Sequential() 

mf_model.add(tf.keras.layers.Input(shape=(X_train.shape[1],))) 

mf_model.add(tf.keras.layers.Dense(16, activation='relu')) 

mf_model.add(tf.keras.layers.Dense(8, activation='relu')) 

mf_model.add(tf.keras.layers.Dense(1, activation='sigmoid')) 

#Class weight for Overall Neural Network Model 

from sklearn.utils import class_weight 
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y_train = np.array(y_train).astype('int32').flatten() 

 

weights = 

class_weight.compute_class_weight(class_weight='balanced',classes=np.array([0,1]),y=y

_train) 

cw = {0: weights[0], 1: weights[1]} 

#Overall Neural Network Model with balanced weight 

mf_model.compile(optimizer='adam', loss='binary_crossentropy', 

                  metrics=['accuracy']) 

mf_model.fit(X_train,y_train,epochs=20, class_weight=cw) 

#Overall Neural Network Confusion Matrix 

import matplotlib.pyplot as plt 

import numpy 

from sklearn import metrics 

 

y_probs = mf_model.predict(X_test) 

y_pred = (y_probs >= 0.5).astype(int) 
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confusion_matrix = metrics.confusion_matrix(y_test, y_pred) 

cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix, 

display_labels = [0, 1]) 

cm_display.plot() 

plt.title("Confusion Matrix of Neural Network (Overall)") 

plt.show() 

# Overall Neural Network Performance Metrics 

from sklearn.metrics import accuracy_score, recall_score, f1_score, roc_curve, 

confusion_matrix 

y_probs = mf_model.predict(X_test) 

y_pred = (y_probs >= 0.5).astype(int) 

 

cm_mf = confusion_matrix(y_test, y_pred) 

print("Confusion Matrix (male and female): ") 

print(cm_mf) 

accuracy = accuracy_score(y_test,y_pred) 

sensitivity = recall_score(y_test,y_pred, pos_label=1) 
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specificity = recall_score(y_test, y_pred, pos_label=0) 

f1 = f1_score(y_test, y_pred) 

print("Accuracy:", accuracy) 

print("Sensitivity:", sensitivity) 

print("Specificity:", specificity) 

print("F1:", f1) 

# Overall Neural Network ROC plot function 

def plot_roc_overall(y_truth, y_prob, ax): 

    FPR, TPR, thresholds = roc_curve(y_truth, y_prob) 

    AUC = np.trapz(TPR, FPR) 

    ax.step(FPR, TPR, linewidth=2,label='Overall (AUC = ' + str(round(AUC,2)) + ')') 

    ax.plot([0,1],[0,1],'--', color = 'black') 

    fs = 10 

    ax.set_xlabel('False Positive Rate', fontsize=fs) 

    ax.set_ylabel('True Positive Rate', fontsize=fs) 

    ax.tick_params(axis='both', labelsize=fs) 

    ax.set_title('ROC Curves for Neural Network') 
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    ax.legend(loc='upper left',fontsize=fs) 

# Overall ROC plot for Neural Network Model 

fig, ax = plt.subplots(figsize=(8,6)) 

plot_roc_overall(y_test, y_probs, ax) 

plt.show() 

#Important features for both male and female (Overall) 

from sklearn.inspection import permutation_importance 

from sklearn.metrics import get_scorer 

from scikeras.wrappers import KerasClassifier 

 

def scorer(model, X, y): 

    y_pred = model.predict(X) 

    return roc_auc_score(y, y_pred) 

perm = permutation_importance(mf_model, X_test, y_test, n_repeats=3, 

                                random_state=0, scoring=scorer) 

importance = pd.DataFrame({'Feature': X_train.columns, 

                          'Importance': perm["importances_mean"], 
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                          'Standard Deviation': perm["importances_std"]}) 

 

mf_importance = importance.sort_values('Importance',ascending=False) 

print(mf_importance[['Feature','Importance','Standard 

Deviation']].to_string(index=False)) 

# Feature importance plot (Overall) 

mf_importance.plot(figsize=(15,5),x='Feature',y='Importance',kind="bar",yerr='Standard 

Deviation') 

plt.title("Neural Network Permutation Feature Importance (Male and Female)") 

plt.ylabel("ROC AUC Performance Drop") 

plt.xticks(rotation=45) 

plt.show() 

 

 

 

3.​ Q2 

3.1. Logistic regression 
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# Logistic Regression - Male 

X_train_m, X_test_m, y_train_m, y_test_m = train_test_split(X_male_scaled, y_male, 

test_size=0.3, random_state=42) 

y_train_m = np.array(y_train_m).astype('int32').flatten() 

weights_male = class_weight.compute_class_weight(class_weight='balanced', 

classes=np.array([0, 1]), y=y_train_m) 

cw_male = {0: weights_male[0], 1: weights_male[1]} 

log_reg_male = LogisticRegression(class_weight=cw_male, max_iter=1000) 

log_reg_male.fit(X_train_m, y_train_m) 

y_pred_m = log_reg_male.predict(X_test_m) 

cm_m = confusion_matrix(y_test_m, y_pred_m) 

fpr_m, tpr_m, _ = roc_curve(y_test_m, log_reg_male.predict_proba(X_test_m)[:, 1]) 

auc_m = auc(fpr_m, tpr_m) 

 

# Logistic Regression - Female 

X_train_f, X_test_f, y_train_f, y_test_f = train_test_split(X_female_scaled, y_female, 

test_size=0.3, random_state=42) 
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y_train_f = np.array(y_train_f).astype('int32').flatten() 

weights_female = class_weight.compute_class_weight(class_weight='balanced', 

classes=np.array([0, 1]), y=y_train_f) 

cw_female = {0: weights_female[0], 1: weights_female[1]} 

log_reg_female = LogisticRegression(class_weight=cw_female, max_iter=1000) 

log_reg_female.fit(X_train_f, y_train_f) 

y_pred_f = log_reg_female.predict(X_test_f) 

cm_f = confusion_matrix(y_test_f, y_pred_f) 

fpr_f, tpr_f, _ = roc_curve(y_test_f, log_reg_female.predict_proba(X_test_f)[:, 1]) 

auc_f = auc(fpr_f, tpr_f) 

 

# Permutation Importance 

perm_importance_m = permutation_importance(log_reg_male, X_test_m, y_test_m, 

scoring='roc_auc', random_state=42, n_repeats=10) 

perm_importance_f = permutation_importance(log_reg_female, X_test_f, y_test_f, 

scoring='roc_auc', random_state=42, n_repeats=10) 
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importance_male = perm_importance_m.importances_mean 

importance_female = perm_importance_f.importances_mean 

std_male = perm_importance_m.importances_std 

std_female = perm_importance_f.importances_std 

 

# Raw importance difference calculation 

importance_diff = importance_male - importance_female 

importance_diff_df = pd.DataFrame({ 

    'Feature': features, 

    'Importance_Male': importance_male, 

    'Importance_Female': importance_female, 

    'Difference (Male - Female)': importance_diff 

}) 

print("\nRaw Importance Differences (Male - Female):") 

print(importance_diff_df.sort_values(by='Difference (Male - Female)', 

ascending=False).to_string(index=False)) 
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# Permutation Feature Importance Charts 

# Sort features and importance by male importance 

sort_indices = np.argsort(importance_male)[::-1] 

features_sorted = [features[i] for i in sort_indices] 

importance_male_sorted = importance_male[sort_indices] 

std_male_sorted = std_male[sort_indices] 

#std_female_sorted = std_female[sort_indices] 

sort_indices = np.argsort(importance_female)[::-1] 

features_sorted = [features[i] for i in sort_indices] 

importance_female_sorted = importance_female[sort_indices] 

std_female_sorted = std_female[sort_indices] 

# Male Confusion Matrix Plot 

fig, ax = plt.subplots() 

disp_male = ConfusionMatrixDisplay(confusion_matrix=cm_m, display_labels=[0, 1]) 

disp_male.plot(ax=ax, values_format='d', cmap='viridis', colorbar=True) 

ax.set_title("Confusion Matrix - Male - Logistic regression") 

ax.set_xticklabels(['Predicted Negative', 'Predicted Positive']) 
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ax.set_yticklabels(['True Negative', 'True Positive']) 

plt.show() 

 

# Female Confusion Matrix Plot 

fig, ax = plt.subplots() 

disp_female = ConfusionMatrixDisplay(confusion_matrix=cm_f, display_labels=[0, 1]) 

disp_female.plot(ax=ax, values_format='d', cmap='viridis', colorbar=True) 

ax.set_title("Confusion Matrix - Female - Logistic regression") 

ax.set_xticklabels(['Predicted Negative', 'Predicted Positive']) 

ax.set_yticklabels(['True Negative', 'True Positive']) 

plt.show() 

# Combined ROC Curve for Overall, Male, and Female 

plt.figure(figsize=(10, 6)) 

plt.plot(fpr_overall, tpr_overall, label=f'Overall (AUC = {auc_overall:.2f})', color='blue') 

plt.plot(fpr_m, tpr_m, label=f'Male (AUC = {auc_m:.2f})', color='green') 

plt.plot(fpr_f, tpr_f, label=f'Female (AUC = {auc_f:.2f})', color='red') 

plt.plot([0, 1], [0, 1], 'k--') 
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plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('Combined ROC Curves for Logistic Regression') 

plt.legend() 

plt.show() 

# Plot for Male 

df_male = pd.DataFrame({'Feature': features_sorted, 'Importance': 

importance_male_sorted, 'Standard Deviation': std_male_sorted}) 

df_male.plot(figsize=(15, 5), x='Feature', y='Importance', kind="bar", yerr='Standard 

Deviation') 

plt.title("Permutation Feature Importance (Male)-Logistic regression") 

plt.ylabel("ROC AUC Performance Drop") 

plt.xticks(rotation=45) 

plt.show() 

# Plot for Female 

df_female = pd.DataFrame({'Feature': features_sorted, 'Importance': 

importance_female_sorted, 'Standard Deviation': std_female_sorted}) 
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df_female.plot(figsize=(15, 5), x='Feature', y='Importance', kind="bar", yerr='Standard 

Deviation') 

plt.title("Permutation Feature Importance (Female)-Logistic regression") 

plt.ylabel("ROC AUC Performance Drop") 

plt.xticks(rotation=45) 

plt.show() 

# Step 1: Merge Male and Female Importance DataFrames 

df_diff = pd.merge(df_male, df_female, on='Feature', suffixes=('_Male', '_Female')) 

 

# Step 2: Calculate difference (Male - Female) 

df_diff['Difference'] = df_diff['Importance_Male'] - df_diff['Importance_Female'] 

 

# Step 3: Sort by absolute difference 

# Step 3: Sort by raw difference (positive to negative) 

df_diff_sorted = df_diff.sort_values(by='Difference', ascending=False) 
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# Step 4: Plot the difference 

plt.figure(figsize=(10, 6)) 

plt.barh(df_diff_sorted['Feature'], df_diff_sorted['Difference'], color='skyblue') 

plt.xlabel("Difference in Importance (Male - Female)") 

plt.title("Feature Importance Difference Between Males and Females (Logistic 

regression)") 

plt.axvline(x=0, color='gray', linestyle='--') 

plt.gca().invert_yaxis()  # Show largest difference at the top 

plt.tight_layout() 

plt.show() 

# Calculate metrics 

def calculate_metrics(y_true, y_pred): 

    cm = confusion_matrix(y_true, y_pred) 

    tn, fp, fn, tp = cm.ravel() 

    accuracy = accuracy_score(y_true, y_pred) 

    precision = precision_score(y_true, y_pred) 

    recall = recall_score(y_true, y_pred) 
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    specificity = tn / (tn + fp) if (tn + fp) > 0 else 0 

    f1 = f1_score(y_true, y_pred) 

    sensitivity = recall  # alias for clarity 

    return { 

        'Accuracy': accuracy, 

        'Precision': precision, 

        'Recall': recall, 

        'Sensitivity': sensitivity, 

        'Specificity': specificity, 

        'F1': f1 

    } 

 

# Metrics 

metrics_overall = calculate_metrics(y, y_pred_overall) 

metrics_male = calculate_metrics(y_test_m, y_pred_m) 

metrics_female = calculate_metrics(y_test_f, y_pred_f) 
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print("Overall Metrics:") 

for k, v in metrics_overall.items(): 

    print(f"{k}: {v:.4f}") 

 

print("\nMale Metrics:") 

for k, v in metrics_male.items(): 

    print(f"{k}: {v:.4f}") 

 

print("\nFemale Metrics:") 

for k, v in metrics_female.items(): 

    print(f"{k}: {v:.4f}") 

 

 

 

3.2. Random forest 

#Male and Female 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123) 
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#Male subset 

male_df = scaled_dat_df[scaled_dat_df['Sex'] == 1.0].copy() 

#Female subset 

female_df = scaled_dat_df[scaled_dat_df['Sex'] == 0.0].copy() 

from sklearn.utils import resample 

female_downsampled = resample(female_df, replace=False, 

                             n_samples=len(male_df), 

                             random_state=123) 

female_downsampled 

#Male 

X_male = male_df.drop(['Diabetes_binary','Sex'], axis=1) 

y_male = male_df['Diabetes_binary'] 

 

#Female 

X_female = female_df.drop(['Diabetes_binary','Sex'], axis=1) 

y_female = female_df['Diabetes_binary'] 
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#Female downsampled 

X_female_ds = female_downsampled.drop(['Diabetes_binary','Sex'], axis=1) 

y_female_ds = female_downsampled['Diabetes_binary'] 

 

#Male 

X_train_male, X_test_male, y_train_male, y_test_male = train_test_split(X_male, 

y_male, test_size=0.2, random_state=123) 

 

#Female 

X_train_female, X_test_female, y_train_female, y_test_female = 

train_test_split(X_female, y_female, test_size=0.2, random_state=123) 

 

#Female downsampled 

X_train_female_ds, X_test_female_ds, y_train_female_ds, y_test_female_ds = 

train_test_split(X_female_ds, y_female_ds, test_size=0.2, random_state=123) 

 

#Male 
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X_train_male, X_test_male, y_train_male, y_test_male = train_test_split(X_male, 

y_male, test_size=0.2, random_state=123) 

 

#Female 

X_train_female, X_test_female, y_train_female, y_test_female = 

train_test_split(X_female, y_female, test_size=0.2, random_state=123) 

 

#Female downsampled 

X_train_female_ds, X_test_female_ds, y_train_female_ds, y_test_female_ds = 

train_test_split(X_female_ds, y_female_ds, test_size=0.2, random_state=123) 

 

#GridSearch 

grid_search = GridSearchCV(RandomForestClassifier(), param_dist, cv=5, n_jobs=-1, 

scoring = 'recall') 

grid_search.fit(X_train, y_train) 

print(grid_search.best_params_) 

#Random Forest 

rf_model_grid = RandomForestClassifier( 
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    n_estimators=200,   

    max_depth=5,  

    min_samples_split=20,   

    max_features='log2',   

    class_weight='balanced' 

) 

#Male Subset Random Forest 

rf_model_grid_male = rf_model_grid.fit(X_train_male, y_train_male) 

y_pred_proba_male = rf_model_grid_male.predict_proba(X_test_male)[:, 1] 

y_pred_male = rf_model_grid_male.predict(X_test_male) 

accuracy_male = accuracy_score(y_test_male, y_pred_male)  

print(accuracy_male) 

recall_male = recall_score(y_test_male, y_pred_male, average='binary') 

print(recall_male) 

specificity_male = recall_score(y_test_male, y_pred_male, average='binary', pos_label = 

0) 

print(specificity_male) 
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f1_score_male = f1_score(y_test_male, y_pred_male, average='binary') 

print(f1_score_male) 

auc_male = roc_auc_score(y_test_male, y_pred_proba_male)  

print(auc_male) 

fpr_male, tpr_male, thresholds_male = roc_curve(y_test_male, y_pred_proba_male) 

roc_auc_male = auc(fpr_male, tpr_male) 

plt.figure(figsize=(8, 6)) 

plt.plot(fpr_male, tpr_male, color='orange', lw=2, label=f'ROC curve (area = 

{roc_auc_male:.2f})') 

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')  # Random classifier 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('ROC Curve Random Forest (Male)') 

plt.legend(loc="lower right") 

plt.savefig('ROC Curve for Random Forest (Male)', dpi = 300) 
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plt.show() 

from sklearn.datasets import make_classification 

from sklearn.inspection import permutation_importance 

import shap 

from sklearn.inspection import permutation_importance 

from sklearn.metrics import get_scorer 

from scikeras.wrappers import KerasClassifier 

 

def scorer(model, X, y): 

    y_pred = model.predict(X) 

    return roc_auc_score(y, y_pred) 

 

perm = permutation_importance(rf_model_grid_male, X_test_male, y_test_male, 

n_repeats=3, 

                                random_state=0, scoring=scorer) 

 

importance = pd.DataFrame({'Feature': X_train_male.columns, 



112 

                          'Importance': perm["importances_mean"], 

                          'Standard Deviation': perm["importances_std"]}) 

 

male_importance = importance.sort_values('Importance',ascending=False) 

 

print(male_importance[['Feature','Importance','Standard 

Deviation']].to_string(index=False)) 

male_importance.plot(figsize=(15,5),x='Feature',y='Importance',kind="bar",yerr='Standar

d Deviation') 

plt.title("Permutation Feature Importance of Random Forest (Male)") 

plt.ylabel("ROC AUC Performance Drop") 

plt.xticks(rotation=45) 

plt.savefig("Permutation Feature Importance of Random Forest (Male)", dpi = 300) 

plt.show() 

#Female Subset Random Forest 

rf_model_grid_female = rf_model_grid.fit(X_train_female, y_train_female) 

y_pred_proba_female = rf_model_grid_female.predict_proba(X_test_female)[:, 1] 
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y_pred_female = rf_model_grid_female.predict(X_test_female) 

accuracy_female = accuracy_score(y_test_female, y_pred_female)  

print(accuracy_female) 

 

recall_female = recall_score(y_test_female, y_pred_female, average='binary') 

print(recall_female) 

specificity_female = recall_score(y_test_female, y_pred_female, average='binary', 

pos_label = 0) 

print(specificity_female) 

f1_score_female = f1_score(y_test_female, y_pred_female, average='binary') 

print(f1_score_female) 

auc_female = roc_auc_score(y_test_female, y_pred_proba_female)  

print(auc_female) 

fpr_female, tpr_female, thresholds_female = roc_curve(y_test_female, 

y_pred_proba_female) 

roc_auc_female = auc(fpr_female, tpr_female) 

plt.figure(figsize=(8, 6)) 
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plt.plot(fpr_female, tpr_female, color='green', lw=2, label=f'ROC curve (area = 

{roc_auc_female:.2f})') 

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')  # Random classifier 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('ROC Curve for Random Forest (Female)') 

plt.legend(loc="lower right") 

plt.savefig('ROC Curve for Random Forest (Female)', dpi = 300) 

plt.show() 

#Important female features 

from sklearn.inspection import permutation_importance 

from sklearn.metrics import get_scorer 

from scikeras.wrappers import KerasClassifier 

 

def scorer(model, X, y): 
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    y_pred = model.predict(X) 

    return roc_auc_score(y, y_pred) 

 

perm = permutation_importance(rf_model_grid_female, X_test_female, y_test_female, 

n_repeats=3, 

                                random_state=0, scoring=scorer) 

 

importance = pd.DataFrame({'Feature': X_train_female.columns, 

                          'Importance': perm["importances_mean"], 

                          'Standard Deviation': perm["importances_std"]}) 

 

female_importance = importance.sort_values('Importance',ascending=False) 

 

print(importance[['Feature','Importance','Standard Deviation']].to_string(index=False)) 

female_importance.plot(figsize=(15,5),x='Feature',y='Importance',kind="bar",yerr='Stand

ard Deviation') 

plt.title("Permutation Feature Importance of Random Forest (Female)") 
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plt.ylabel("ROC AUC Performance Drop") 

plt.xticks(rotation=45) 

plt.savefig("Permutation Feature Importance of Random Forest (Female)", dpi = 300) 

plt.show() 

 

#Combining Male and Female Sets 

sorted_df_male_importance = male_importance.sort_values(by='Feature') 

sorted_df_female_importance = female_importance.sort_values(by='Feature') 

merged_df_importance = pd.merge(left=male_importance, right=female_importance, 

on='Feature', how='inner') 

difference_importance_df = merged_df_importance.drop(columns=['Standard 

Deviation_x','Standard Deviation_y'], axis=1, inplace=False) 

difference_importance_df.head() 

difference_importance_df.columns = ['Feature', 'Male', 'Female'] 

difference_importance_df.head() 
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#Difference Between Male and Female Feature Importances 

import matplotlib.pyplot as plt 

import pandas as pd 

 

# Feature importance data 

 

df = pd.DataFrame(difference_importance_df) 

df["Difference"] = df["Male"] - df["Female"] 

 

# Sort by raw difference (not by absolute value) 

df_sorted = df.sort_values("Difference", ascending=False) 

 

# Plot 

plt.figure(figsize=(10, 6)) 

bars = plt.barh(df_sorted["Feature"], df_sorted["Difference"], color='skyblue') 
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plt.xlabel("Difference in Importance (Male - Female)") 

plt.title("Permutation Feature Importance Difference Between Males and Females 

(Random Forest)") 

plt.axvline(x=0, color='gray', linestyle='--') 

plt.gca().invert_yaxis()  # Highest difference at the top 

plt.tight_layout() 

plt.savefig("Permutation Feature Importance Difference Between Males and Females 

(Random Forest)", dpi = 300) 

plt.show() 

y_pred_proba_combined = rf_model_grid_combined.predict_proba(X_test)[:, 1] 

y_pred = rf_model_grid_combined.predict(X_test) 

fpr_combined, tpr_combined, thresholds_combined = roc_curve(y_test, 

y_pred_proba_combined) 

roc_auc_combined = auc(fpr_combined, tpr_combined) 

 

 

#Graphing ROC Curves 
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plt.figure(figsize=(8, 6)) 

plt.plot(fpr_male, tpr_male, color='orange', lw=2, label=f'ROC curve (male) (area = 

{roc_auc_male:.2f})') 

plt.plot(fpr_combined, tpr_combined, color='blue', lw=2, label=f'ROC curve (overall) 

(area = {roc_auc_combined:.2f})') 

plt.plot(fpr_female, tpr_female, color='green', lw=2, label=f'ROC curve (female) (area = 

{roc_auc_female:.2f})') 

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')  # Random classifier 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('ROC Curve for Random Forest (Overall)') 

plt.legend(loc="lower right") 

plt.savefig('ROC Curve for Random Forest (Overall)', dpi = 300) 

plt.show() 
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#Confusion Matrix Female 

actual_combined = np.random.binomial(1,.9,size = 1000) 

predicted_combined = np.random.binomial(1,.9,size = 1000) 

 

confusion_matrix_female = metrics.confusion_matrix(y_test_female, y_pred_female) 

 

cm_display_female = metrics.ConfusionMatrixDisplay(confusion_matrix = 

confusion_matrix_female, display_labels = [0, 1]) 

 

cm_display_female.plot() 

plt.title("Confusion Matrix of Random Forest (Female)") 

plt.savefig("Confusion Matrix of Random Forest (Female)", dpi = 300) 

plt.show() 

 

#Confusion Matrix Male 
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from sklearn import metrics 

actual_male = np.random.binomial(1,.9,size = 1000) 

predicted_male = np.random.binomial(1,.9,size = 1000) 

 

confusion_matrix_male = metrics.confusion_matrix(y_test_male, y_pred_male) 

 

cm_display_male = metrics.ConfusionMatrixDisplay(confusion_matrix = 

confusion_matrix_male, display_labels = [0, 1]) 

 

cm_display_male.plot() 

plt.title("Confusion Matrix of Random Forest (Male)") 

plt.savefig("Confusion Matrix of Random Forest (Male)", dpi = 300) 

plt.show() 

 

3.3. Neural network 

#Male subset 
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male_df = scaled_dat_df[scaled_dat_df['Sex'] == 1.0].copy() 

#Female subset 

female_df = scaled_dat_df[scaled_dat_df['Sex'] == 0.0].copy() 

#Male 

X_male = male_df.drop(['Diabetes_binary','Sex'], axis=1) 

y_male = male_df['Diabetes_binary'] 

#Female 

X_female = female_df.drop(['Diabetes_binary','Sex'], axis=1) 

y_female = female_df['Diabetes_binary'] 

#Male 

X_train_male, X_test_male, y_train_male, y_test_male = train_test_split(X_male, 

y_male, test_size=0.2, random_state=123) 

 

#Female 

X_train_female, X_test_female, y_train_female, y_test_female = 

train_test_split(X_female, y_female, test_size=0.2, random_state=123) 

#Male model 
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male_model = tf.keras.Sequential() 

male_model.add(tf.keras.layers.Input(shape=(X_train_male.shape[1],))) 

male_model.add(tf.keras.layers.Dense(16, activation='relu')) 

male_model.add(tf.keras.layers.Dense(8, activation='relu')) 

male_model.add(tf.keras.layers.Dense(1, activation='sigmoid')) 

#Female model 

female_model = tf.keras.Sequential() 

female_model.add(tf.keras.layers.Input(shape=(X_train_female.shape[1],))) 

female_model.add(tf.keras.layers.Dense(16, activation='relu')) 

female_model.add(tf.keras.layers.Dense(8, activation='relu')) 

female_model.add(tf.keras.layers.Dense(1, activation='sigmoid')) 

#Female model (balanced weights) 

from sklearn.utils import class_weight 

y_train_female = np.array(y_train_female).astype('int32').flatten() 

weights_female = 

class_weight.compute_class_weight(class_weight='balanced',classes=np.array([0,1]),y=y

_train_female) 
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cw_female = {0: weights_female[0], 1: weights_female[1]} 

cw_female = {0: 0.5, 1: 5} 

#Compile the female model with balanced weights 

female_model.compile(optimizer='adam', loss='binary_crossentropy', 

                  metrics=['accuracy']) 

female_model.fit(X_train_female,y_train_female,epochs=20,class_weight=cw_female) 

# Female Neural Network Performance Metrics 

from sklearn.metrics import accuracy_score, recall_score, f1_score, roc_curve 

y_probs_female = female_model.predict(X_test_female) 

y_pred_female = (y_probs_female >= 0.5).astype(int) 

 

cm_female = confusion_matrix(y_test_female,y_pred_female) 

print("Confusion Matrix (female): ") 

print(cm_female) 

accuracy_female = accuracy_score(y_test_female,y_pred_female) 

sensitivity_female = recall_score(y_test_female,y_pred_female, pos_label=1) 

specificity_female = recall_score(y_test_female, y_pred_female, pos_label=0) 
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f1_female = f1_score(y_test_female, y_pred_female) 

print("Accuracy:", accuracy_female) 

print("Sensitivity:", sensitivity_female) 

print("Specificity:", specificity_female) 

print("F1:", f1_female) 

# Female Neural Network Confusion Matrix 

import matplotlib.pyplot as plt 

import numpy 

from sklearn import metrics 

y_probs_female = female_model.predict(X_test_female) 

y_pred_female = (y_probs_female >= 0.5).astype(int) 

confusion_matrix_female = metrics.confusion_matrix(y_test_female, y_pred_female) 

plt.figure(figsize=(6,5)) 

cm_display_female = metrics.ConfusionMatrixDisplay(confusion_matrix = 

confusion_matrix_female, display_labels = [0, 1]) 

cm_display_female.plot(colorbar=False) 

plt.title("Confusion Matrix of Neural Network (Female)") 
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plt.tight_layout() 

plt.show() 

# ROC curve for female model 

fig, ax = plt.subplots(figsize=(8,6)) 

plot_roc(y_test_female, y_probs_female, ax) 

plt.show() 

#Important female features 

from sklearn.inspection import permutation_importance 

from sklearn.metrics import get_scorer 

from scikeras.wrappers import KerasClassifier 

 

def scorer(model, X, y): 

    y_pred = model.predict(X) 

    return roc_auc_score(y, y_pred) 

 

perm = permutation_importance(female_model, X_test_female, y_test_female, 

n_repeats=3, 
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                                random_state=0, scoring=scorer) 

 

importance = pd.DataFrame({'Feature': X_train_female.columns, 

                          'Importance': perm["importances_mean"], 

                          'Standard Deviation': perm["importances_std"]}) 

 

female_importance = importance.sort_values('Importance',ascending=False) 

# Plot of important female features 

female_importance.plot(figsize=(15,5),x='Feature',y='Importance',kind="bar",yerr='Stand

ard Deviation') 

plt.title("Neural Network Permutation Feature Importance (Female)") 

plt.ylabel("ROC AUC Performance Drop") 

plt.xticks(rotation=45) 

plt.show() 

# Female Neural Network ROC plot function 

def plot_roc_female(y_truth, y_prob, ax): 

    FPR, TPR, thresholds = roc_curve(y_truth, y_prob) 
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    AUC = np.trapz(TPR, FPR) 

    ax.step(FPR, TPR, linewidth=2,label='Female (AUC = ' + str(round(AUC,2)) + ')') 

    ax.plot([0,1],[0,1],'--', color = 'black') 

     

    fs = 10 

    ax.set_xlabel('False Positive Rate', fontsize=fs) 

    ax.set_ylabel('True Positive Rate', fontsize=fs) 

    ax.tick_params(axis='both', labelsize=fs) 

     

     

    ax.set_title('ROC Curves for Neural Network') 

    ax.legend(loc='upper left',fontsize=fs) 

 

# Male model (balanced weights) 

from sklearn.utils import class_weight 
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y_train_male = np.array(y_train_male).astype('int32').flatten() 

 

weights_male = 

class_weight.compute_class_weight(class_weight='balanced',classes=np.array([0,1]),y=y

_train_male) 

cw_male = {0: weights_male[0], 1: weights_male[1]} 

cw_male = {0: 0.5, 1: 5} 

#Compile the male model with balanced weights 

male_model.compile(optimizer='adam', loss='binary_crossentropy', 

                  metrics=['accuracy']) 

male_model.fit(X_train_male,y_train_male,epochs=20,class_weight=cw_male) 

# Male Neural Network Performance Metrics 

from sklearn.metrics import accuracy_score, recall_score, f1_score, roc_curve 

y_probs_male = male_model.predict(X_test_male) 

y_pred_male = (y_probs_male >= 0.5).astype(int) 

 

cm_male = confusion_matrix(y_test_male, y_pred_male) 
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print("Confusion Matrix (male): ") 

print(cm_male) 

 

accuracy_male = accuracy_score(y_test_male,y_pred_male) 

 

sensitivity_male = recall_score(y_test_male,y_pred_male, pos_label=1) 

 

specificity_male = recall_score(y_test_male, y_pred_male, pos_label=0) 

 

f1_male = f1_score(y_test_male, y_pred_male) 

print("Accuracy:", accuracy_male) 

print("Sensitivity:", sensitivity_male) 

print("Specificity:", specificity_male) 

print("F1:", f1_male) 

# Male Neural Network Confusion Matrix 

import matplotlib.pyplot as plt 
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import numpy 

from sklearn import metrics 

 

y_probs_male = male_model.predict(X_test_male) 

y_pred_male = (y_probs_male >= 0.5).astype(int) 

 

confusion_matrix_male = metrics.confusion_matrix(y_test_male, y_pred_male) 

 

cm_display_male = metrics.ConfusionMatrixDisplay(confusion_matrix = 

confusion_matrix_male, display_labels = [0, 1]) 

 

cm_display_male.plot() 

plt.title("Confusion Matrix of Neural Network (Male)") 

plt.show() 

#Important male features 

from sklearn.inspection import permutation_importance 

from sklearn.metrics import get_scorer 
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from scikeras.wrappers import KerasClassifier 

 

def scorer(model, X, y): 

    y_pred = model.predict(X) 

    return roc_auc_score(y, y_pred) 

 

perm = permutation_importance(male_model, X_test_male, y_test_male, n_repeats=3, 

                                random_state=0, scoring=scorer) 

 

importance = pd.DataFrame({'Feature': X_train_male.columns, 

                          'Importance': perm["importances_mean"], 

                          'Standard Deviation': perm["importances_std"]}) 

 

male_importance = importance.sort_values('Importance',ascending=False) 

 

print(male_importance[['Feature','Importance','Standard 

Deviation']].to_string(index=False) 
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# Plot of important male features 

male_importance.plot(figsize=(15,5),x='Feature',y='Importance',kind="bar",yerr='Standar

d Deviation') 

plt.title("Neural Network Permutation Feature Importance (Male)") 

plt.ylabel("ROC AUC Performance Drop") 

plt.xticks(rotation=45) 

plt.show() 

# Male Neural Network ROC plot function 

def plot_roc_male(y_truth, y_prob, ax): 

    FPR, TPR, thresholds = roc_curve(y_truth, y_prob) 

     

    AUC = np.trapz(TPR, FPR) 

    ax.step(FPR, TPR, linewidth=2,label='Male (AUC = ' + str(round(AUC,2)) + ')') 

    ax.plot([0,1],[0,1],'--', color = 'black') 

     

    fs = 10 

    ax.set_xlabel('False Positive Rate', fontsize=fs) 
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    ax.set_ylabel('True Positive Rate', fontsize=fs) 

    ax.tick_params(axis='both', labelsize=fs) 

     

     

    ax.set_title('ROC Curves for Neural Network') 

    ax.legend(loc='upper left',fontsize=fs) 

# ROC curve for male,female, and overall models 

fig, ax = plt.subplots(figsize=(8,6)) 

plot_roc_overall(y_test, y_probs, ax) 

plot_roc_male(y_test_male, y_probs_male, ax) 

plot_roc_female(y_test_female, y_probs_female, ax) 

plt.show() 

# Feature importance difference plot between males and females 

import matplotlib.pyplot as plt 

import pandas as pd 

 

# Feature importance data 
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data = { 

    "Feature": [ 

        "GenHlth", "BMI", "HighBP", "Age", "HighChol", "HvyAlcoholConsump", 

"CholCheck", 

        "Income", "HeartDiseaseorAttack", "MentHlth", "DiffWalk", "PhysHlth", 

"PhysActivity", 

        "Education", "Stroke", "Smoker", "NoDocbcCost", "Veggies", "AnyHealthcare", 

"Fruits" 

    ], 

    "Female": [ 

        0.058459, 0.039956, 0.018232, 0.015464, 0.013666, 0.003603, 0.003124, 

        0.002254, 0.001412, 0.000963, 0.000828, 0.000774, 0.000349, 

        0.000319, 0.000282, 0.000233, 0.000180, 0.000062, 0.000021, -0.000139 

    ], 

    "Male": [ 

        0.059273, 0.026509, 0.012096, 0.051672, 0.008858, 0.003717, 0.004597, 

        0.003047, 0.003098, 0.000628, 0.001704, 0.001101, 0.000337, 
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        0.000182, 0.000629, -0.000328, -0.000087, 0.000120, 0.000097, 0.000446 

    ] 

} 

 

df = pd.DataFrame(data) 

df["Difference"] = df["Male"] - df["Female"] 

 

# Sort by raw difference (not by absolute value) 

df_sorted = df.sort_values("Difference", ascending=False) 

 

# Plot 

plt.figure(figsize=(10, 6)) 

bars = plt.barh(df_sorted["Feature"], df_sorted["Difference"], color='skyblue') 

plt.xlabel("Difference in Importance (Male - Female)") 

plt.title("Feature Importance Difference Between Males and Females (Neural Network)") 

plt.axvline(x=0, color='gray', linestyle='--') 

plt.gca().invert_yaxis()  # Highest difference at the top 
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plt.tight_layout() 

plt.grid() 

plt.show() 

 

4.​ Conclusion 

# Load the uploaded CSV file 

file_path = 'male_female_importance_difference.csv' 

df = pd.read_csv(file_path) 

# Add a new column for mean difference across the three models 

df['mean_difference'] = df[['logistic_regression', 'random_forest', 

'neural_network']].mean(axis=1) 

 

# Sort the dataframe by the mean difference 

df_sorted = df.sort_values(by='mean_difference', 

ascending=False).drop(columns='mean_difference') 

 

# Set 'Feature' as index again 
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df_heatmap_sorted = df_sorted.set_index('Feature') 

 

# Create the sorted heatmap 

plt.figure(figsize=(10, 12)) 

sns.heatmap(df_heatmap_sorted, annot=True, cmap='coolwarm', center=0, linewidths=0.5, 

fmt=".4f") 

plt.title('Feature Importance Difference (Male - Female) — Sorted by Mean Difference') 

plt.ylabel('Feature') 

plt.xlabel('Model') 

plt.tight_layout() 

plt.savefig('feature_importance_difference.tiff', dpi=300, format='tiff') 

plt.show() 

 


