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Abstract/Executive Summary

The Centers for Disease Control and Prevention (CDC) aims to identify any relationships
between diabetes and an individual’s lifestyle. This agency has tasked our team, the Sigma
Dynamics, to develop a machine learning (ML) model to predict a patient’s diabetes risk
classification (diabetes and healthy) by using the collected healthcare/demographic statistics
along with the health-related survey data from The Behavioral Risk Factor Surveillance System
(BRFSS). This dataset consists of a total of 1,014,720 demographic observations, 1,268,400
observations for lifestyle behaviors, health status, and disease history, and 761,040 healthcare

access observations.

Eor the first research question: which machine learning model achieves the highest performance,

we tested and developed three separate ML models (logistic regression, random forest, and
neural network) on the CDC survey data. To find which ML model is the best to predict a
patient’s diabetes risk classification, we calculated the following performance measures of the
three models: accuracy, sensitivity, specificity, F1-score and area under the curve (AUC) derived
from receiver operating characteristic (ROC) curve. Among these performance measures, we
prioritize sensitivity because this is a medical diagnosis ML model and we want the rate of
misclassification of true diabetic patients as low as possible. AUC is a secondary prioritized
measure because it can show the overall performance and identify the model with the best
trade-off. Among the three models, the neural network outperformed the other two models with a
close to 90% sensitivity (neural network: 88%; Logistic regression: 77%; random forest: 78%)

and higher AUC (neural network: 0.83; Logistic regression: 0.82; random forest: 0.82).



For the second research question: what are the key features or factors associated with diabetes

that differ between male and female patients, we developed the three aforementioned ML models

on the male and female subsets, separately. Not surprisingly, the neural network still
outperformed the other two models in terms of sensitivity in both male (neural network: 89%;
Logistic regression: 76%; random forest: 76%) and female (neural network: 87%; Logistic
regression: 77%; random forest: 79%) subsets, and it also slightly outperformed in terms of
AUC. To assess which features contribute most to diabetes classification in males and females
from the three models, we used permutation importance evaluated by the changes in AUC
derived from ROC. This method reveals the drop in model performance when a feature’s values
are randomly shuffled, indicating how much the model relies on that feature. By calculating the
permutation-based importance measures for the features in both male and female subsets for
each model, and subtracting the importance measure of females from males, we were able to
obtain the importance difference index between males and females (importance difference index
= importance measure in males - importance measure in females). This index reflects the
differed associations of the features with diabetes between males and females. A positive index
indicates the feature is more important for males, whereas a negative index indicates the feature
is more important for females. We observed that age is strongly associated with diabetes in males
but not in females (importance difference index: 0.0336 for Logistic regression, 0.0021 for
random forest and 0.0362 for neural network), whereas body mass index (BMI) is strongly
associated with diabetes in females but not in males (importance difference index: -0.0078 for
Logistic regression, -0.0077 for random forest and -0.0134 for neural network). In addition,
different diseases were also revealed differed associations: coronary heart disease is more

associated to males, whereas high blood pressure and high cholesterol are more associated to



females. These findings support the need for sex-specific risk models, as feature importance

varies between males and females.



Project Plan

CDC description

The Centers for Disease Control and Prevention (CDC) serves as the national public health
agency for the United States. This organization’s mission is to protect the overall public health of
America.

Since the CDC is a public health organization, most of its information is publicly available
online. One of its purposes is to provide health guidelines and disease statistics to educate those
who are susceptible to any health threats prevalent in the U.S. or abroad. Additionally, the CDC
conducts research on disease threats on a global scale to develop strategies and treatments to
counteract these outbreaks. This public health organization conducts ongoing research to create
tactics for effective disease control/prevention, improve health treatments, identify risk factors
for new or existing diseases, and promotes healthy habits for individuals with existing health
conditions. Furthermore, the CDC plays a critical role in the training and preparation of public

health workers and leaders through their career/training programs.

CDC Overview:

Organization - Centers for Disease Control and Prevention (CDC)

Budget - $9.683 billion (FY 2025)

Total Employee Count - 11,814

Global Employee Count - over 1,700 health professionals all over 60 countries, 1,300 local staff,
and 400 staff from the U.S.

Key Leaders:

Susan Monarez, PhD - Acting Director, First Assistant to the Director, Principal Deputy Director



Debra Houry, MD MPH - Deputy Director for Program and Science/Chief Medical Officer
Nina Witkofsky - Deputy Director of Public Affairs/Acting Director of Communications
Sara Patterson - Office of the Chief Operating Officer (OCOO)

Matthew Buzzelli - Office of the Chief of Staff

Top Competitors:

National Health Service (NHS)

Mayo Clinic

World Health Organization (WHO)

MedlinePlus

NHS inform

Analysis opportunity

The Centers for Disease Control and Prevention (CDC) aims to identify any relationships
between diabetes and an individual’s lifestyle. This agency has tasked our team, Sigma
Dynamics, to develop a machine learning model to predict a patient’s diabetes risk classification
(diabetes, pre-diabetes, healthy) by using the collected healthcare/demographic statistics along
with the health-related survey data from the Behavioral Risk Factor Surveillance System
(BRFSS). This dataset consists of a total of 1,014,720 demographic observations, 1,268,400
observations for lifestyle behaviors, health status, and disease history, and 761,040 healthcare
access observations. Our efforts will contribute to the long-term goal of preventing diabetes in

patients through early detection based on an individual’s lifestyle factors.

Research questions



This project aims to support the CDC's efforts in understanding and predicting diabetes
prevalence by leveraging machine learning techniques applied to their survey data. To guide our

investigation and model development, we focus on the following two research questions:

RQ1: Which machine learning model achieves the highest performance, particularly in
sensitivity, for predicting diabetes using the CDC dataset?

Given the public health implications of missed diagnoses, our primary goal is to identify a
machine learning model that maximizes sensitivity (recall)—the ability to correctly identify
individuals with diabetes. We will benchmark several supervised learning algorithms, including
logistic regression, random forests, and neural networks. Model performance will be evaluated
across multiple metrics, with a focus on sensitivity to ensure the model is effective in flagging

potential cases of diabetes for further screening or intervention.

RQ2: What are the key features or factors associated with diabetes that differ between
male and female patients in the CDC dataset?

We aim to explore feature importance and potential sex-based differences in the risk factors
associated with diabetes. We will identify which features most strongly contribute to diabetes
predictions and assess how these features differ between male and female patients. This analysis
will provide insight into potential disparities and inform targeted prevention or outreach

strategies.

Hypothesis
H1. The best machine learning model is robust even if we subdivide the dataset into male

and female-specific subsets.



We will compare the performances of different machine learning models on all samples, male
only samples, and female only samples respectively. We expect the best model will outperform
other models with either all samples set or sex-specific sample subsets. We will test this
hypothesis in terms of different performance measuring metrics, especially sensitivity.

H2. Different features/factors contribute to the occurrence of diabetes in male and female
populations.

There has been scientific research showing different causes and clinical manifestations between

male and female diabetic patients (https://pmc.ncbi.nlm.nih.gov/articles/PMC10163139/). In this
capstone project, we expect to observe features/factors contributing to the occurrence of diabetes

in male and female populations differently.

Data

The Behavioral Risk Factor Surveillance System (BRFSS) is a health-related telephone survey
that is collected annually by the CDC. Each year, the survey collects responses from over
400,000 Americans on health-related risk behaviors, chronic health conditions, and the use of
preventative services. It has been conducted every year since 1984. For this project, the data
collected for the year 2015 was used. This dataset contains three different versions depending on
the sample sizes and the definition of predicting variable diabetes. For this project, the version
with the largest sample size and a clear binary definition of diabetes will be used
(diabetes_binary health indicators BRFSS2015.csv). It has a total of 21 features, which can be
broken down into the following categories.

Demographic attributes



https://pmc.ncbi.nlm.nih.gov/articles/PMC10163139/
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This dataset contains demographic characteristic features for individual samples, including sex,
age, education, income and body mass index (BMI).

Life habit

The following life habit features were included: smoking, consume fruits, consume vegetables,
heavy drinking and physical activity.

General health

The following health-related features were included: general health, mental health, physical
health, and difficulty walking.

Disease history

The following disease history related features were included: high blood pressure, high
cholesterol, stroke, heart disease or attack.

Health coverage

The following health coverage related features were included: health insurance and not seeing a

doctor because of cost.

Measurements

It is important to consider what is being measured as well as what influential factors are present
in our analysis. Some of the measurements derived from the collected CDC data include
demographic features, lifestyle behaviors, health status, disease history, and healthcare access.
The demographic features such as sex, age, income, and body mass index (BMI) correlate with
disease presence and risk. Lifestyle behaviors such as smoking, heavy drinking, physical activity,
and the daily consumption of fruits/vegetables all influence the risk of diabetes. Health status

including general health, mental health, physical health, and difficulty walking captures an
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individual's overall well-being which could be affected by diabetes. Disease history including
pre-existing conditions could increase the risk of developing diabetes. Lastly, healthcare access
indicates whether an individual has health insurance and if they may have avoided seeing a
doctor due to the cost of medical care, which could leave an individual more prone to developing
diabetes.

The Centers for Disease Control and Prevention (CDC) has provided a dataset using both
demographic/healthcare measurements and survey data from the Behavioral Risk Factor
Surveillance System (BRFSS) to analyze key factors and gain valuable insights. By using the
given indicators/measurements gathered from multiple sources, this data allows for a deeper

analysis to capture the relationship between an individual's lifestyle and diabetes.

Methodology
In exploratory data analysis, we will perform a pairwise Pearson correlation analysis between

numerical features and calculate pairwise Jaccard similarity coefficients between categorical
features to find possibly redundant features. For example, whether fruit lovers are more likely to
be vegetable lovers? If the two features are highly correlated (i.e. Jaccard index > 0.9), only one
feature will be retained for follow-up analyses to reduce calculation burden, and the retained
feature will be used as an agent for the removed feature.

For research question 1, we will compare multiple machine learning models, including logistic
regression, random forest, and neural network, to evaluate their performances based on all
sample super-set, the male subset, and the female subset. Due to a higher percentage of features
being categorical in the dataset, to further reduce the computation burden, we will apply latent

class analysis to find latent features to represent categorical features for the samples. We will
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evaluate based on accuracy, sensitivity, specificity, and F1-score. Of these performance
measuring metrics, we especially care about sensitivity because we don’t want our machine
learning model to miss any patients to delay their treatments.

For research question 2, we will determine the most important features/factors for either the male
or female subset. After building a model, we will extract the coefficients or indices that can
quantify the importance of these features. For example, log-odds coefficients from a logistic
regression or Gini importance indices, which measure the mean decrease in impurity from a
random forest. In addition, we will also measure the rank changes of the features between males
and females. A higher rank change index indicates the feature plays a more different role

between males and females.

Computational Methods and Outputs
We will use logistic regression, random forest, and neural network to answer RQ1: Which
machine learning model achieves the highest performance, particularly in sensitivity, for

predicting diabetes using the CDC dataset?

First, we must choose the proper model performance measure. The relevant choices are
precision score, recall score, and F1. Recall score measures the model’s ability to find all
relevant instances of a class in a data set. Precision score measures what proportion of the risk
factors identified were actually relevant. Since Recall and Precision Scores are complementary,
they may be balanced by the use of the F1 Score. Regarding our first question: Which machine
learning model achieves the highest performance, particularly in sensitivity, for predicting
diabetes using the CDC dataset? We will be identifying individuals for diabetes screening.

Failing to identify an individual with diabetes could delay treatment which is a much worse
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outcome than the cost of a false positive: making an extra trip to the doctor for further
examination. So for the first question, false negatives would be more critical and we should
choose Recall as our metric for comparing models. For our second question: What are the key
features or factors associated with diabetes that differ between male and female patients in the
CDC dataset? We should use the F1 Score to balance Precision and Recall since the risk factors

should be both identified and identified correctly.

Other than the performance metric, both research questions will follow similar procedures. For
our Logistic model, we will preprocess the data by scaling and treating outliers and
multicollinearity. Our Random Forest and Neural Network models will use unprocessed data. For
the Random Forest and Neural network, tuning is critical. For Random Forest, we will use
Random Search Cross Validation using a Random Hyperparameter Grid. For our Neural
Network models, we will tune the most impactful hyperparameters: number of hidden layers,

number of neurons, and the learning rate.

If the performance on Random Forest and Neural Network models are still underperforming, we
will look at class imbalance for our first research question. According to the CDC, 11% of the
US population has diabetes (which means that 89% don’t). Since we have a mix of numerical
and categorical data, we can use SMOTE-NC, which stands for Synthetic Minority
Oversampling Technique. NC stands for numerical and categorical. This technique is an

algorithm to generate new synthetic data of the minority class.

By these steps, we will have our best models and our best measure of which is best, as well as

our best answer for the features unique to each gender.
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Output Summary

For our exploratory data analysis, we will output a heatmap showing the Pearson Correlation

such as this:

Correlations Between Variables

......

When we are choosing the number of classes for Latent Class analysis, we will output an elbow

plot like this:
25500
e A[C
USA g BIC
Adjusted BIC
25000
24500
24000
2 Class 3 Class 4 Class 5 Class 6 Class

Elbow Plots from latent class analysis (LCA): Germany, Korea, and USA

To compare models to answer question 1, we will output a table such as:



ML Method

Logistic Regression
Decision Tree

Random Forest

Suppork Vector Machine
K-Mearest Neighbors
Gradient Boosting
XGBoost

Neural Network

Recall (Train)

0.78

0.98

0.92

0.76

0.85

0.90

0.91

0.95

15

Recall (Test)

0.74
0.65
0.80
0.72
0.70
0.82
0.84

0.78

We can use the built-in “feature importance” method in our random forest to give us a ranked list

of the features. We could run it on the male patients and on the female patients, the plot the

importance of the features in a double bar chart like the one below:
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Figure 1: The sex distribution of the major
autoimmune diseases.

Incidence by sex (%)

Campaign Implementation

Diabetes is a chronic killer. According to the Orlando Clinical Research Center, diabetes “kills
more people every year than breast cancer and AIDS combined. Complications from diabetes
can vary. However, the most prevalent comorbid conditions include kidney disease, amputations,
blindness, cardiovascular disease, obesity, hypertension, hypoglycemia, dyslipidemia, and risk of

heart attack or stroke.”

Each of our research questions could benefit researchers investigating diabetes. The answer to
question one, “Which machine learning model achieves the highest performance, particularly in

sensitivity, for predicting diabetes using the CDC dataset?” would give researchers ideas about
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which model would be best for their case use. The answer to question two, “What are the key
features or factors associated with diabetes that differ between male and female patients in the
CDC dataset?” could suggest avenues for new research focusing on gender specific: symptoms,
progression of the disease and prognosis. Patients and diagnosticians could also benefit from the
answer to question 2, by showing which factors are more likely to be present in a woman with

diabetes versus a man with it.
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Exploratory Data Analysis

The version of the data we used for the project from the diabetes dataset from the CDC is the one
with the largest sample size, and target variable is binary (healthy or diabetes). We performed
exploration with respect to four aspects (subheadings).

1. Correlations Between the Features

We explore the correlations between different features in order to identify highly related features.

For example, whether fruit lovers are also very likely to be vegetable lovers? If the features are

highl rrelated, it is not n ary to incl th of them, and one feature can asa

surrogacy to the other. This reduction can avoid redundancy and also lessen computation burden.

-1.0

-08

GenHIth MentHIth PhysH\th Age Education Income
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Above is a heatmap of the Pearson correlations for our numerical data. Our data falls into two
distinct categories: binary data and numerical data. We calculated the Pearson correlations for the
numerical data. If two features are highly correlated, then there is a danger of multicollinearity
causing issues in our models later on. However, according to our exploration of the data using
the Pearson correlations, there are no features that are significantly highly correlated. This
implies there is not a relatively large danger of multicollinearity should we use them in our
models.

Because our data falls into two distinct categories, binary data and numerical data, we chose to
use Jaccard similarity on the numerical data. The data for the binary features came from a phone
survey performed by the CDC. The survey was called the Behavioral Risk Factor Assessment
Surveillance System.

According to the data exploration of these binary features, the only two features with a Jaccard
similarity greater than .9 were cholesterol check and any healthcare. Due to the fact that we
believe they are truly measuring different things, we will keep those two features, despite the fact
that they have a Jaccard similarity above the .9 threshold. None of the other binary features
exhibited a Jaccard similarity greater than our .9 threshold, so they will also remain in the
models. From this analysis, we are confident that the binary features we analyzed will not be too
similar as to cause problems in our models later. We have a heatmap of the Jaccard similarity

matrix calculated from our binary features below.



Heatmap of Jaccard Similarities of Binary Features
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2. Feature differences between diabetic patients and healthy controls

We explore the feature differences between diabetic patients and healthy controls in order to

1dentifv features which mav be good indicators of diabetes in machine learning models. For

example, if the distributions of a numerical feature are different between diabetic patients and
healthy controls, or the positive percentages of a binary feature are different between diabetic

patients and healthy controls.
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Distribution of MentHIth by Diabetes Status
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The figure above shows various distributions of each numerical feature in the CDC dataset, by

diabetes status. The distribution of BMI for healthy individuals appears to have a general mean at

25 compared to those with diabetes with a slightly greater average which lies around 30. This

indicates a greater average BMI for people with diabetes. Another observation is that the

distributions for general health for diabetes patients mainly lie on the good to poor general health

rating scale (3 to 5), whereas healthy patients lie on the excellent to good scale (1 to 3). Both the

mental health and physical health distributions for diabetes/healthy patients appear to behave in a

similar manner in that most of the data for both features fall at 0. This suggests that both groups,

diabetes or healthy, report more individuals with a very minimal amount of poor mental health

days or physical injury/illness days. The distribution of age for the diabetic group is shifted more

to the right compared to the healthy group which means that the average age is higher among
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individuals with diabetes. The majority of individuals in the diabetes group appear to have a
piecewise distribution which remains constant from the 4 to 6 range. On the other hand, the
healthy group has a strong right-skewed distribution with a gradual increase. This implies that
the education level is lower for diabetics compared to healthy individuals. Finally, the
distribution of income for diabetics is uniform while the distribution for healthy patients is
skewed to the right. This shows that healthy individuals have a higher income scale than the
diabetic patients.
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This figure above illustrates the percent differences of binary variables between diabetes status
(healthy/diabetes). The HighBP (high blood pressure) variable appears to have a significant
difference with around 15% of diabetics reporting no high blood pressure as opposed to the 25%
that report high blood pressure. Even though the sizes of each distribution differs due to a greater
number of healthy individuals, it is evident that diabetics are more likely to report having high
blood pressure than not. The HighChol (high cholesterol) variable demonstrates a similar trend
where more diabetics have reported having high cholesterol than not. The CholCheck
(cholesterol check) variable distribution appears to have more diabetics who have had a
cholesterol check in five years (15%) compared to diabetics that haven’t (10%). The smoker
variable seems to have more diabetics who reported smoking at least 100 cigarettes in their life
(15%) compared to diabetics that haven’t (10%). The stroke variable distribution displays 30%
of diabetics who have had a stroke versus 15% that have not had one. The HeartDiseaseorAttack
binary feature distributions report more diabetics (around 35%) claiming to have had coronary
heart disease or myocardial infarction while fewer diabetics (15%) have not. The percent
distribution for the PhysActivity (physical activity) shows that around 20% of diabetics had no
physical activity in the past 30 days while a mere 10% have. This suggests that more diabetics
perform less physical activity. For the fruit and veggie consumption distributions, more diabetics
(15%) have reported not consuming fruits/vegetables one or more times in a day compared to the
other diabetic individuals who do (10%). The HvyAlcoholConsump (heavy alcohol
consumption) attribute is observed to have a greater percentage of diabetics (15%) who have not
had seven to fourteen drinks per week compared to those that do (5%). The AnyHealthcare
variable appears to have slightly more diabetics (5%) that have any kind of health care coverage

than those who do not. The NoDocbcCost feature distributions reveal that there is a slight
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percentage increase (5%) in diabetics who have not seen a doctor in the past twelve months

because of cost compared to diabetics that have not had this issue. The DiffWalk (difficulty

walking) attribute reveals that a greater percentage of diabetics (30%) have difficulty walking

compared to the diabetic individuals that don’t have any difficulty (20%). Finally, the Sex

variable shows a 5% increase in diabetics in males as opposed to females.

3. Feature Differences between Males and Females

We explore the feature differences between males and females in order to identify potential

fe

atures which may contribute to the susceptibilities of diabetes in sex-specific manners.
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The figure above shows the distributions of numerical variables in the CDC dataset, segmented

by sex (male in blue, female in red). The BMI distribution for males and females is similar,
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peaking around 25-30, but males have a slightly wider spread toward higher BMI values (up to
90), while females are more concentrated between 20 and 40. For general health (GenHIth), both
sexes show a similar pattern, with most individuals rating their health between 1 (excellent) and
3 (good), though females have a slightly higher count in the 2-3 range. Mental health (MentHIth)
and physical health (PhysHIth) distributions are also comparable between sexes, with most
individuals reporting 0 days of poor mental or physical health. However, females report slightly
more days in the 1-10 range for mental health. The age distribution shows males and females
peaking around age categories 8-10 (55-69 years), but females have a slightly higher count in the
oldest age group (13, 80+ years). Education levels are similar, with most individuals in both
groups having a college education (4-6 range), though females have a slightly higher count at the
highest education level (5,6). Lastly, the income distribution shows both sexes having a
right-skewed pattern, with most individuals in the lower income brackets (1-5), but males have a

much higher count in the highest income bracket (8, $75,000 or more).
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The figure above compares the percentage differences in binary variables between males and
females within the CDC dataset. For HighBP (high blood pressure), males exhibit a 5% higher
prevalence than females, indicating a slightly greater tendency among men to be affected by this
condition. HighChol (high cholesterol) follows a similar trend, with males showing a 4% higher
incidence than females, suggesting a notable trending difference in cholesterol levels between the
sexes. In CholCheck (cholesterol check in the past 5 years), males are 10% more likely not to
have undergone a check than females, pointing to a potential gap in preventive health screening
practices among men. Smoking (Smoker) shows a significant difference, with males being 10%
more likely to be smokers than females, reflecting a stronger association of tobacco with male
demographics. Stroke prevalence shows no difference, with an equal 50% split between males
and females who have not experienced a stroke, indicating a balanced distribution of this
condition across sexes. HeartDiseaseorAttack (coronary heart disease or myocardial infarction)
demonstrates a substantial disparity, with males having a 20% higher prevalence than females,
underscoring a considerably greater risk of cardiovascular events among men. Physical activity
(PhysActivity) indicates that males participate 4% more frequently than females, suggesting a
slight edge in physical engagement among men. For eating fruit habits, females exceed males by
10%, indicating a notable preference or habit among women for fruit intake. Veggie consumption
also favors females, who exceed males by 10%, highlighting a stronger inclination toward
vegetable consumption among women. Heavy alcohol consumption (HvyAlcoholConsum)
remains nearly equal between males and females, with only a negligible difference, suggesting
similar drinking patterns across sexes. Anyhealthcare coverage shows females at a 5% higher
rate than males, implying slightly greater access or utilization of healthcare services among

women. NoDocbcCost (inability to see a doctor due to cost) is 9% higher among females than



males, indicating a greater financial barrier to medical care for women. Lastly, DiffWalk
(difficulty walking) is 10% higher in females than males, pointing to a more pronounced

challenge with mobility among women in the dataset.
4. Feature differences between diabetic patients and healthy controls stratified by
sex

Finally, we explored the feature differences between diabetic patients and healthy controls in

males and females respectively. This exploration enables us to identify the most likely diabetic

contributors in males and females separately, which can guide us to answer question 2.

Numerical Feature Distributions by Diabetes Status (Males)
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Numerical Feature Distributions by Diabetes Status (Females)
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For the numerical features as shown above, we observed several clear distributional shifts
between diabetic and non-diabetic groups in both sexes. Body Mass Index (BMI) consistently
appeared higher among individuals with diabetes, with this difference more pronounced in
females. Age-related variables also skewed older in the diabetic group, aligning with the
established association between age and Type 2 diabetes. In females, features such as BMI,
systolic blood pressure, and cholesterol-related measures displayed tighter and more separated
distributions across diabetes status, suggesting these features may have stronger predictive power
in this subgroup. In contrast, these same variables in males often exhibited broader or
overlapping distributions, potentially limiting their usefulness in male-specific predictive

models.

Furthermore, several features displayed non-normal or multimodal distributions—especially

within the diabetic group—indicating underlying complexity or the presence of subpopulations.
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These patterns suggest that linear models may be insufficient to capture the full scope of

associations within the data. Instead, nonlinear approaches such as decision trees, ensemble

methods (e.g., Random Forests, XGBoost), or neural networks may be more appropriate due to

their ability to model interactions and non-additive effects.
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mE healthy W diabetes

Categorical Feature Distributions by Diabetes Status (Females)
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The analysis of categorical variables as shown above, using stacked bar plots, revealed additional
patterns. Features related to health behavior and access to care—such as physical activity levels,
general health perception, and frequency of healthcare visits—differed meaningfully between
diabetic and non-diabetic individuals. These differences were visible in both sexes but again

tended to be more pronounced among females. For example, a larger proportion of diabetic
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females reported poor general health, infrequent physical activity, or more frequent mental health
issues, while non-diabetic females more often reported healthier behaviors and better perceived
health. In males, while similar trends existed, the distributions were generally flatter, suggesting

less distinction across diabetes status for many categorical variables.

These findings suggest that behavioral and perception-based features, especially those captured
by multi-level categorical variables, may contribute more strongly to diabetes prediction in
females than in males. The presence of multiple response levels also supports the use of models
that handle categorical data natively and effectively, without requiring excessive preprocessing
or one-hot encoding. Tree-based models are particularly advantageous in this context, as they can

naturally accommodate such complexity.

Taken together, the exploratory findings from both numerical and categorical variables indicate
that the contribution of individual features to diabetes prediction is likely to differ between males
and females, both in magnitude and relevance. This reinforces the importance of building and
evaluating separate machine learning models for each sex. It also motivates the use of feature
interpretability tools, such as SHAP values or permutation importance, to identify which
variables drive predictions in each subgroup. Features that are highly informative in one sex may
be weak or irrelevant in the other, and failing to account for these differences could compromise

model accuracy and equity.

Overall, this exploratory analysis offers critical guidance for model design, feature selection, and
interpretability in the context of sex-specific diabetes risk modeling. These insights will inform
the next phase of our work, where we build, train, and evaluate separate machine learning

models to further investigate and compare feature contributions across sexes.
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Methodology

RQ1: Which machine learning model achieves the highest performance, particularly in

sensitivity, for predicting diabetes using the CDC dataset?

1. Machine learning methods to be used:

Logistic Regression: A supervised machine learning algorithm used for classification problems.
It's a linear model that estimates the log odds of diabetes presence based on input features. It
requires preprocessing steps such as scaling numerical variables (e.g., BMI, Age) and one-hot
encoding categorical variables to handle multicollinearity and ensure model stability.

Random Forest: A machine learning algorithm that uses many decision trees to make better

predictions. Its ensemble method comprises multiple decision trees, which predict diabetes by
averaging tree outputs. It uses Gini importance to assess feature impact and employs random
search cross-validation to tune hyperparameters like the number of trees and the maximum
depth, accommodating unprocessed data with encoded categoricals.

Neural Network: A machine learning algorithm that uses many decision trees to make better

predictions. It is a non-linear model with configurable hidden layers and neurons, optimized via
backpropagation and learning rate adjustments. Tuning focuses on the number of layers, neuron

count, and learning rate, with data preprocessed similarly to logistic regression for consistency.

2. How to compare the performances to identify the outperforming model which will be applied

in question 27
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Models will be trained and evaluated using 10-fold cross-validation, randomly splitting the
dataset into 10 equal folds, training on nine folds, and testing the remaining fold each iteration to
prevent overfitting. Performance metrics include:

Accuracy: The proportion of correct predictions. Accurate positive and true negative are divided
by the total.

Sensitivity: The ability to correctly identify diabetic cases, prioritized to minimize false
negatives given the public health impact of missed diagnoses. True positive is divided by the
total with the condition.

Specificity: The proportion of non-diabetic cases correctly identified. True negative divided by
the total without the condition.

F1-Score: It provides a balanced measure and harmonic mean of precision and recall. Given the
dataset's class imbalance (approximately 11% diabetes prevalence per CDC data), we will apply
SMOTE-NC (Synthetic Minority Oversampling Technique for Numerical and Categorical data)
to generate synthetic samples for the minority class if needed. The model demonstrating the
highest sensitivity across the all-sample, male, and female subsets will be selected for RQ2

analysis.

7P

F1 Score = 1
7P + §(FP + FIN)

RQ2: What are the key features or factors associated with diabetes that differ between

male and female patients in the CDC dataset?

1. How to extract the feature importances from either male or female subset?
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The original features will be used to build the models, and afterwards, the coefficients/indices
will be extracted to deduce the importance of each feature and their contribution to predicting
our binary target variable, diabetes status. The first method we will use is logistic regression.
This provides log-odds coefficients for each attribute which is used to identify the strength of the
relationship between a feature and the probability of diabetes in patients. In order to analyze the
associated features for both genders, we will fit the logistic regression model on male/female
subsets then extract and compare the log-odds coefficients. The next machine learning algorithm
to be used is random forest. This model consists of decision trees that predict diabetes status by
evaluating various features and splitting the data based on the values that reduce impurity. Gini
importance indices measure the mean decrease in impurity to measure the importance of an
attribute. The prediction is made using the overall results of each decision tree to determine
classification (diabetes/healthy). Two separate models will be used for each gender so that Gini
importance scores can be compared to find predictive features in males versus females. We will
utilize random search cross validation by using a random hyperparameter grid in order to
perform hyperparameter tuning for the random forest model. The last machine learning model
we will build is a neural network. This method consists of forward propagation which is when
features are passed through multiple layers (input,hidden,output) where linear transformation
occurs and is then passed to an activation function to create a non-linear model. Next,
backpropagation occurs which is when the model learns by comparing the predicted and true
value by using a loss function with the objective of minimizing the loss. The gradients are then
computed and used to adjust weights to minimize the loss/error. Finally, the weights are updated
opposite in direction of the gradient and the process repeats over a number of epochs. We will

fine tune some hyperparameters such as the number of hidden layers, the number of neurons, and
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the learning rate. To identify the important features between genders in our neural network
model, we can use permutation feature importance for each subset and evaluate the performance

of each model.

2. How to measure the rank changes of the features between males and females?

After ranking features by their importance scores in each subset (e.g., highest to lowest
coefficients for logistic regression, highest to lowest Gini importance indices for random forest,
or highest to lowest permutation-based importance values for neural networks), we will compute
the weight change indices as importance differences between the male and female models for
individual features. For instance, if the BMI importance is 2 for females but 6 for males, the
importance difference is 4 for BMI. A positive importance difference signifies a feature is more
associated with males, whereas a negative importance difference signifies a feature is more

associated with females, which provides insights into sex-specific risk factors.
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Analysis

Data preprocessing

To make sure the data consistency between the follow-up analyses, we built the different
machine learning models based on the same preprocessing output. After reading in the raw data,
missing values for the individual features and the target variable were examined with the
command dat_df.isnull().sum(), and any samples with missing value for any columns were
removed with the command dat_df.dropna(). Fortunately, this is a very clean dataset without any
missing value for any feature or target variable.

The dataset include two types of features, numerical and binary. The numerical features include:
BMI, GenHIth, MentHIth, PhysHIth, Age, Education and Income. The binary features include:
HighBP, HighChol, CholCheck, Smoker, Stroke, HeartDiseaseorAttack, PhysActivity, Fruits,
Veggies, HvyAlcoholConsump, AnyHealthcare, NoDocbcCost, DiffWalk and Sex. To less the
influences of different ranges from numerical features on follow-up model building and make all
numerical features be within the same range, all the numerical features were standardized with
Z-score normalization with the command StandardScaler().fit _transform(dat_df[numVars]),
whereas the binary features were kept unchanged. Afterwards, the preprocessed output was

provided as the input for follow-up analyses.

Model Results

RQ1: Which machine learning model achieves the highest performance, particularly in

sensitivity, for predicting diabetes using the CDC dataset?
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Logistic Regression Random Forest Neural Network
Accuracy 0.73 0.72 0.71 (0.64)
Sensitivity 0.77 0.78 0.8 (0.88)
Specificity 0.73 0.71 0.7 (0.60)
F1-score 0.44 0.44 0.44 (0.41)
AUC 0.82 0.82 0.83

QI Logistic regression

To address RQ1, a logistic regression model was implemented using a train-test split approach.
Numerical variables were scaled using StandardScaler, and categorical features were adapted as
integer arrays. The data was split 70/30, stratified on the target variable, and the class imbalance
was addressed using class weight='balanced'.The confusion matrix revealed 47,612 true
negatives, 17,888 false positives, 2,522 false negatives, and 8,082 true positives, achieving a
sensitivity of 0.77 in identifying diabetic individuals. The ROC curve confirmed good
discriminatory power with an AUC of 0.82. Permutation importance analysis showed GenHIth
(0.0591), BMI (0.0278), and Age (0.0336) as top predictors.An odds ratio analysis further
clarified the direction and strength of associations between features and diabetes risk. Notably,
GenHlth had the highest odds ratio (1.86), followed by BMI (1.62), Age (1.58), HighBP (1.44),
and HighChol (1.33), suggesting individuals with poor general health, higher BMI, older age, or
high blood pressure/cholesterol have significantly increased odds of having diabetes. Factors
with protective capability that reduced the diabetic risk included higher income (0.89), higher
education (0.96), and heavy alcohol consumption (0.84), though the latter may reflect behavioral

confounding rather than causation. The Sex with an odd ratio of (1.15) indicates a slight increase
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in diabetes risk in males, laying the groundwork for further gender-specific analysis in RQ2.
These odds ratios support highlighting key risk factors driving true positive identifications.These
findings confirm that logistic regression performs well in identifying at-risk patients with a
sensitivity that meets public health goals. The model’s consistent performance on the test set

supports H1 and sets a benchmark for comparing more complex models in future work.

Q1 Random forest

For the random forest classifier, a train test split approach was used along with balanced weights.
The balanced weights helped counteract the effect of the imbalanced nature of the data set (most
people do not have diabetes). To optimize the random forest, a grid optimization approach was
used. Grid search was used to tune the hyper-parameters and optimized for recall. Using this

method, we tuned the model and found that the best parameters for our purposes:

n_estimators=200,
max_depth=5,

min_samples split=20,
max_features="log2",
class_weight="balanced’,
random_state=123

The accuracy score for diabetes predictions using this random forest classifier model was .72.
This means that the model was correctly predicting diabetes 72% of the time (total of correct
predictions/total number of predictions). The random forest model has a lower accuracy score

than the logistic regression model we were using as a baseline. The random forest classifier had a
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sensitivity/recall of .78. This implies that it has a relatively low number of false negatives. The
specificity was .71. This means that the true negatives are relatively high. Unfortunately, the
F1-score is merely .44, which is unfortunately low, but the other models performed similarly on
this metric. Finally, the AUC of the ROC of the random forest model was .82 which shows good

discriminatory power.

For feature importance, we used permutation tests. This revealed that, for the random forest
classifier, the top predictors were: General Health (.041), Age (.024), and High Blood Pressure

(.022).

Q1 Neural network

The neural network model was implemented on the male and female superset using an 80/20
split while maintaining the target variable’s distribution. Balanced weights were used to handle
the imbalanced dataset since the majority of our data contained healthy individuals. The
confusion matrix in Appendix C shows 31,313 true negatives, 12,308 false positives, 1,554 false
negatives, and 5,561 true positives. A low number of false negatives allows for a high sensitivity
for the superset model to correctly detect diabetic patients.

Now, our main priority is to maximize sensitivity since it is crucial in correctly identifying
diabetes patients (true positive). The Neural Network model provided the best result in terms of
sensitivity (0.80). In this case, the Neural Network model correctly detects 80% of all diabetic
patients. The specificity of the Neural Network model is the lowest (0.70) compared to the other
two models for detecting healthy patients (true negative). This means a greater likelithood for the
Neural Network model to misclassify healthy individuals as diabetics (false positive). Even

though this may be the case, it would be an acceptable trade-off to misclassify healthy
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individuals (false positive) instead of diabetic individuals (false negative). The F1-score is
maintained at a low score of 0.44 for all models. Additionally, the Neural Network model
contains the highest AUC score of the ROC is (0.83) which means a better overall ability for the
model to classify between diabetic and healthy patients.

To find baseline important features in the overall neural network model, we used the permutation
feature importance technique. The outcome of this analysis revealed that the top predictors from
the male and female superset neural network model were GenHIth(0.054), BMI(0.040), and

Age(0.035).

RQ2: What are the key features or factors associated with diabetes that differ between

male and female patients in the CDC dataset?

The two tables below display the performance results from the male and female subset models

for Logistic Regression, Random Forest, and Neural Network.

Performance measures in the male subset:

Logistic Regression Random Forest Neural Network
Accuracy 0.72 0.71 0.60
Sensitivity 0.76 0.76 0.89
Specificity 0.71 0.70 0.55
F1-score 0.45 0.44 0.40
AUC 0.81 0.80 0.81
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Performance measures in the female subset:

Logistic Regression Random Forest Neural Network
Accuracy 0.75 0.72 0.67
Sensitivity 0.77 0.79 0.87
Specificity 0.74 0.71 0.64
F1-score 0.43 0.43 0.41
AUC 0.83 .83 0.84

Q2 Logistic regression

For RQ2, the logistic regression model was applied separately to male and female subsets to

investigate gender-specific robustness and feature variations. Performance metrics revealed :

Male Performance: Sensitivity = 0.759, AUC = 0.810

Female Performance: Sensitivity = 0.766, AUC = 0.830

indicating a slightly higher discriminatory power for females. The importance of permutation
analysis highlighted distinct gender differences, with BMI and HighBP being more influential for
females and age-dominant for males. The difference in permutation importance scores (male -
female): Age showed a significant increase (+0.036) for males, while BMI decreased (-0.013) for
males, indicating greater relevance for females. High Blood Pressure and High Cholesterol were
also more impactful for females, whereas smoking status exhibited a negative importance for
males, possibly due to interactions with other health behaviors. Odds ratio analysis further
elucidated these patterns: for males, Age (OR = 1.58) and GenHlIth (OR = 1.86) were the most

significant, linking older age and poor general health to higher diabetes risk; for females, BMI
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(OR =1.62) and HighBP (OR = 1.44) were key, emphasizing the roles of body mass index and
hypertension. The odds ratios observed are consistent with the variations in permutation
importance; these results support Hypothesis 2 (H2), demonstrating that males and females
exhibit distinct patterns of diabetes risk factors. While logistic regression contributed valuable
results, its linear nature may overlook non-linear relationships identified during exploratory data
analysis (EDA). Future studies could employ tree-based or neural network models to capture

these complexities.

Q2 Random forest

Having split the dataset into male and female subsets, we used the random forest classifier model
on each one to determine differences between male and female diabetes patients. Afterwards, we
performed feature importance analysis again to identify which features have more or less

predictive power between sexes.

Male Performance Metrics (Random Forest): Sensitivity = 0.76, AUC = 0.80

Female Performance Metrics (Random Forest): Sensitivity = 0.79, AUC = .83

The permutation tests for feature importance revealed that age and general health score were
more important for males and that BMI and high blood pressure was more important for females

when it comes to predicting diabetes performance using the random forest model.

The random forest model’s male-female subset analysis revealed that there are substantial

differences between diabetes predictive ability within the model (at least in terms of recall).
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Additionally, the feature importance permutation analysis confirms that there are differences
between importance of particular features between male and female patients. The random forest
provides a baseline of differences between sexes that may be expanded upon during the neural

net analysis.

02 Neural network

Two separate neural network models have been created for male and female subsets. Each model
contains an 80/20 split where the proportion of classes in the training and test sets stay the same.
To handle class imbalance, the parameter class weight="balanced’ is used for equal optimization
in both classes. The confusion matrices for the male model and female model in Appendix F
show a similar amount of false positives. The female model contains more true negatives and
true positives which means that there are more diabetes/healthy female samples in the data. The

male model has less false negatives than the female model which induces a better recall.

Male Performance: Sensitivity = 0.89, AUC = (.81

Female Performance: Sensitivity = 0.87, AUC = 0.84

The neural network model for the male subset produces the lowest accuracy but highest
sensitivity value across all models. This means that this model correctly detects 89% of all
diabetic patients in the male subset. Similar to the male and female neural network model, the
male model has the smallest specificity (0.55) compared to the other two male subset models

which means the model misclassifies 45% of healthy individuals as diabetic (false positives).
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Among the three male models, both the neural network and logistic regression models have the
same AUC score of 0.81. Therefore, both the neural network and logistic regression models have
similar classification abilities. As for the female subset model, it carries the smallest accuracy
and F1-score. However, this model accurately identifies 87% of all diabetic patients in the male
subset. This female model also has the lowest specificity (0.64) compared to the logistic
regression and random forest female models, meaning it misclassified 36% of healthy patients as
diabetic (false positives). Lastly, the neural network female model holds the highest AUC score
(0.84) compared to the logistic regression and random forest female subset models which leads
to a more favorable classification performance.

Finally, we applied permutation feature importance to each male and female subset neural
network model to extract and compare their top predictors. The difference between the top
predictors for the male and female subset models show that Age is a significantly strong
predictor for males while BMI, HighBP, and HighChol was found to be more important for
females. Overall, the performance of the male and female neural network models showed slight
differences in recall between the two gender models, but displayed a notable difference when
compared to the male and female superset model. The important predictors of the male model
(Appendix K) and female model (Appendix L) proves that there are differences in the features
associated with diabetes for male and female patients. In the end, the neural network model
outperformed the logistic regression and random forest models based on its performance metrics

for all subsets of the diabetes data.

Conclusion
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After building logistic regression, random forest and neural network models from the male and
female subsets, computing feature importance measures, and comparing the feature importance
measures between males and females to generate the feature importance change index by
subtracting the female importance measure from male importance measure for any given feature,

we compiled a feature importance change index heatmap for the three models after sorting the

averaged feature importance change indices from high to low.
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Data Visualization

RQ1: Which machine learning model achieves the highest performance, particularly in
sensitivity, for predicting diabetes using the CDC dataset?

We compared the performances of three machine learning models (Logistic regression, random
forest and neural network) in terms of accuracy, sensitivity, specificity, and F1-score. We

prioritize sensitivity because these are disease prediction models. and we don’t want the models

to miss too many diabetic patients to delay their treatments. Below is a table summarizing the

performance metrics between the three models. The neural network outperforms the other two
models in terms of sensitivity. The accuracy of the neural network is lower than those of the
other two models due to its higher probability of misclassifying healthy controls as diabetic

patients (lower specificity). Nevertheless, these misclassifications do not harm the healthy

ntrols an 0 encour hem to live healthier 1i 1d th rrence of di
Logistic Regression Random Forest Neural Network
Accuracy 0.73 0.72 0.71 (0.64)
Sensitivity 0.77 0.78 0.8 (0.88)
Specificity 0.73 0.71 0.7 (0.60)
F1-score 0.44 0.44 0.44 (0.41)
AUC 0.82 0.82 0.83

Then, we compared the areas under the curve (AUC) derived from the receiver operating

characteristic (ROC) between the three models. Because ROC runs false positive rate (the rate of

misclassifving health ntrols as diabetic patients) against t itive rate (the rate of

correctly identifying diabetic patients). it can show the overall performance and identify the
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model with the best trade-off. The following graphs are the ROC curves for the three models,

respectively. For the confusion matrices of the three models, please refer to Appendices A-C.

ROC curve for Logistic Regression:
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In addition, we also generated a table for the odds ratios of the features in Logistic regression:

Feature Odds ratio Feature Odds ratio Feature Odds ratio
HighBP 1.44 PhysActivity 0.98 MentHIth 0.97
HighChol 1.33 Fruits 0.97 PhysHIth 0.94
CholCheck 1.28 Veggies 0.98 DiffWalk 1.04
BMI 1.62 HvyAlcoholCo 0.84 Age 1.58

nsump

Smoker 1 AnyHealthcare 1.02 Education 0.96
Stroke 1.03 NoDocbcCost 1.01 Income 0.89
HeartDiseaseorAttack 1.08 GenHlth 1.86 Sex 1.15




ROC curve for Random Forest:

ROC of Random Forest

1.0 4

0.8

0.6

True Positive Rate

0.4 7’

0.2 7’

0.0 T

ROC curve (AUC = 0.82)

0.0

0.2

T
0.4

T
0.6

0.8

1.0

False Positive Rate

Parameters for Random Forest: (Used Hyperparameter Grid Search):
{'class_weight': 'balanced', 'max depth': 5,

'min samples split': 20,

'n_estimators': 200}

ROC curve for Neural Network:
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AUC values derived from these ROCs were also listed in the table above. The neural network

outperforms the other two models and shows the best overall performance in terms of AUC.

The neural network model outperformed the other two models in terms of the key measure of

sensitivity and the overall performance. Therefore, we will pay more attention to the outcomes

from the neural network in the second question in this project.

RQ2: What are the key features or factors associated with diabetes that differ between

male and female patients in the CDC dataset?

Before identifying which features are more associated to male or female diabetic patients, we

compared the model performances in male and female subsets separately.

Performance measures in the male subset:

Logistic Regression Random Forest Neural Network
Accuracy 0.72 0.71 0.60
Sensitivity 0.76 0.76 0.89
Specificity 0.71 0.70 0.55
F1-score 0.45 0.44 0.40
AUC 0.81 0.80 0.81




Performance measures in the female subset:

Logistic Regression Random Forest Neural Network
Accuracy 0.75 12 0.67
Sensitivity 0.77 .79 0.87
Specificity 0.74 71 0.64
F1-score 0.43 43 0.41
AUC 0.83 .83 0.84

The following graphs are the ROC curves for the three models in the male and female subsets,

respectively. For the confusion matrices of the three models, please refer to Appendices D-F.

ROC curves from male and female subsets for Logistic regression:

Combined ROC Curves for Logistic Regression
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ROC curves from male and female subsets for random forest:

ROC Curve for Random Forest (Overall)
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To assess which features contribute most to diabetes classification in males and females from the
three models, we used permutation importance evaluated by the changes in AUC derived from
ROC. This method reveals the drop in model performance when a feature’s values are randomly
shuffled, indicating how much the model relies on that feature. For the ranked bar plots of the
permutation feature importance scores from either male or female subset for the three models,
please refer to Appendices G-L. Then, we compared the change of importance score for each
feature by subtracting the score of female from the score of male to get the following plots for

the three models, respectively.

Logistic regression:

Feature Importance Difference Between Males and Females (Logistic regression)
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Random forest:

Permutation Feature Importance Difference Between Males and Females (Random Forest)
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Neural network:

Feature Importance Difference Between Males and Females (Neural Network)
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Finally, we integrated the male-female importance difference measures across the three models

into one heatmap:

Feature Importance Difference (Male - Female) — Sorted by Mean Difference
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From the results of the changes of importance scores:

e Age was significantly more important in males than in females, showing an increase in
importance scores for both Logistic regression and neural network. This suggests that

age-related risk patterns for diabetes are more predictive among men.

e Conversely, BMI was more predictive in females across the three applied models. This

could reflect different physiological or behavioral responses to weight between the sexes.

e High Blood Pressure and High Cholesterol were also more important for predicting

diabetes in females than in males.

e Interestingly, some features, such as stroke and smoker, show discrepant associations
with either male or female, possibly due to their weak effects or interactions with other

health behaviors.

e Other factors like General Health, Income, and Alcohol Consumption had similar but

low-to-moderate contributions across sexes.

These findings support the need for sex-specific risk models, as feature importance varies

between males and females. Visualizing these differences helps clinicians and model developers

tailor predictions and interventions accordingly.
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Ethical Recommendations

The application of Machine learning methods in diabetes risk prediction enhances early detection
and targeted intervention in the general public health. However, in the meantime, it also
introduces ethical problems, which may include but are not limited to fairness, privacy,
transparency, and responsible use of all different aspects. According to Quinn (2020, Chapter 1),
ethical decision-making in data science requires prioritizing individual well-being and societal
values, especially in health-related applications. The following analysis applies the project with
five major ethical theories, Kantianism, act utilitarianism, rule utilitarianism, social contract
theory, and virtue ethics, to pursue ethical practices.

Under the Fairness and Algorithmic Bias consideration, biased datasets can result in
misdiagnosis for underrepresented populations. In our case, unequal sampling may reduce model
accuracy for certain ethnic or socioeconomic groups. Social contract theory emphasizes mutual
benefit and equitable treatment (Quinn, 2020, Chapter 2). To uphold fairness, stratified sampling
and subgroup validation can be used to ensure the model serves all demographics properly. Rule
utilitarianism supports adopting general rules, like bias audits and transparency guidelines, that
increase overall happiness and justice when universally applied.

Model Transparency: Healthcare models must be interpretable to respect individuals’ rational
autonomy (Quinn, 2020, Chapter 2.6). Kantian ethics demands that individuals be treated as ends
in themselves, not merely as means. Logistic regression, used as a comparison method with other
ML methods in this project, supports this principle through interpretability and clarity.
Transparent explanations in the technology method we are using empower patients and providers

to make informed decisions, reinforcing public trust and understanding.
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Privacy and Responsible Data Stewardship: Using publicly available health data still requires
ethical safeguards. Quinn (2020, Chapter 7) emphasizes informed consent and confidentiality.
Under social contract theory, data users are obliged to honor mutual rights, including privacy.
Virtue ethics also requires that data scientists act with integrity, protecting participant identities
even when not legally mandated.

Avoiding Misuse of Statistics: Practices like p-hacking or overfitting for better metrics may yield
misleading results. According to act utilitarianism, such actions are unethical if the harms (e.g.,
misdiagnoses) outweigh the benefits (e.g., improved test accuracy). Kantianism also condemns
manipulation that treats patients as mere data points. Instead, developers must ensure honest
reporting, proper cross-validation, and transparency to promote the collective good.

Human Autonomy and Decision Support: Predictive models should assist, not replace, human
independent judgment. Quinn (2020, Chapter 2.10) states that virtue ethics emphasizes acting
with wisdom and compassion. Kantianism reinforces that people must never be used solely as
tools. Therefore, models should be solely used to help human beings improve efficiency and
accuracy, and encourage shared decision-making between patients and clinicians.

Conclusion:

Using ethical theories like Kantianism, utilitarianism, social contract theory, and virtue ethics to
guide this project ensures that this diabetes prediction project meets ethical integrity. Each theory
contributes a unique lens: rights (Kantianism), consequences (utilitarianism), fairness (social
contract theory), and moral character (virtue ethics). The ethical goal is to empower patients,

improve care equity, and respect human dignity while advancing health technology responsibly.
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Challenges

When we were training the models, due to the imbalanced sample sizes between diabetic patients
and healthy controls (13.93% diabetes v.s. 86.07% healthy controls), the models were not able to
reach an ideal sensitivity, which is the prioritized performance measure in this project, because
the sample size of diabetic patients is much less than the sample size of healthy controls, and the
models are less likely to recognize the true positive than to recognize the true negative
consequently. To resolve this issue, we applied cost-sensitive learning, or a balanced weight, to
adjust the models to be more sensitive to recognizing diabetic patients than healthy controls.
Technically, diabetic patients were assigned a higher class weight and healthy controls a lower
class weight in model training. With cost-sensitive learning, the models were able to reach an

ideal sensitivity, especially for the neural network (~90%).

Another challenge in the project is the imbalanced sample sizes between the sexes (44.03%
males v.s. 55.97% females). One issue brought about by this imbalance is the discrepant model
performance measures between the male and female subsets. The performance measures from
the female subset are better than the performance measures from the male subset due to the
larger sample size. To resolve this issue, we downsampled the female subset to make it almost
the same size as the sample size of the male subset. After downsampling, the discrepancy

between the performance measures of the male and female subsets is significantly reduced.



60

Recommendations

The neural network is the outperforming model among the three models (logistic regression,
random forest and neural network) we built which can correctly classify true diabetic patients
with the highest sensitivity (~90%). However, there is still room to improve the model (~10%).
We used a relatively simple neural network model with two hidden layers and a low number of
neurons (16 neurons for one hidden layer and 8 neurons for the other) because a complex neural
network model is time-consuming and our project is time-limited. This simple model may not be
competent to fully capture the characteristics from the large samples because we have a large
total sample size (253,680) relative to a small number of neurons. Therefore, this reminds us to
wonder whether increasing the number of hidden layers and the number of neurons of the hidden
layers will be able to further increase its sensitivity? If it is, how much sensitivity can be
increased? This is an interesting question to explore but needs more time and may need a

computer with higher capability, such as a computing cluster.

In this project, we divided the samples into the male and female subsets to explore their
respective most important features which are associated with the occurrence of diabetes. It is
intriguing to consider whether further subdividing the male and female subsets will change the
importance measures of the original male and female subsets. For example, if we subdivide the
male samples to smoking males and non-smoking males based on the smoker feature, whether
the feature importances of either smoking males or non-smoking males will be different than the
feature importances of males with smoking and non-smoking status combined. The same thought
can be extended to other features in the dataset. However, such subdividing analysis should be

taken with caution because the sample size for a certain level of a feature may not guarantee such
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analysis. For example, smoking female samples may comprise only a very small proportion of

the total samples.

This dataset includes several disease-related features, such as high blood pressure, high
cholesterol and heart disease. From the heatmap from data visualization, it can be observed that
high blood pressure and high cholesterol are more associated with females to develop diabetes,
whereas coronary heart disease is more associated with males to develop diabetes. However, we
cannot say that a female with high blood pressure or high cholesterol is more likely to develop
diabetes, and a male with coronary heart disease is more likely to develop diabetes. The reason
behind this argument is because our machine learning models only provide us with the
associations between the features with diabetes but they are not necessarily the causes. We are
not sure whether a person with high blood pressure is more likely to develop diabetes, or a
diabetic person is more likely to develop to high blood pressure. This brought us some ideas on
whether we can leverage data to disentangle the cause-result relationships between diabetes and

the other disease-related features.
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Appendix

Appendix A. Confusion matrix for Logistic Regression

Confusion Matrix - Overall - Logistic regression
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Appendix B. Confusion Matrix for Random Forest

Confusion Matrix of Random Forest (Overall)
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Appendix C. Confusion Matrix for Neural Network

Confusion Matrix of Neural Network (Overall)
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Appendix D. Confusion matrices from male and female subsets for Logistic regression
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Appendix E. Confusion matrices from male and female subsets for random forest
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Appendix F. Confusion matrices from male and female subsets for neural network
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Appendix G. Ranked bar plot of the permutation feature importance score from the male subset

for Logistic regression

Permutation Feature Importance (Male)-Logistic regression
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Appendix H. Ranked bar plot of the permutation feature importance score from the female

subset for Logistic regression

Permutation Feature Importance (Female)-Logistic regression
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Appendix I. Ranked bar plot of the permutation feature importance score from the male subset

for random forest

Permutation Feature Importance of Random Forest (Male)
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Appendix J. Ranked bar plot of the permutation feature importance score from the female subset

for random forest

Permutation Feature Importance of Random Forest (Female)
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Appendix K. Ranked bar plot of the permutation feature importance score from the male subset

for neural network
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Appendix L. Ranked bar plot of the permutation feature importance score from the female

subset for neural network
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Code

1. Preprocessing

Jaccard Similarity:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import statistics

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import OneHotEncoder

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test split, RandomizedSearchCV

#from keras.datasets import fashion mnist

from sklearn.inspection import permutation_importance

from sklearn.metrics import classification report, confusion matrix, roc_auc_score,

TOoC_curve, auc
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from sklearn.metrics import accuracy_score, precision_score, ConfusionMatrixDisplay,

recall_score, f1_score

from sklearn.decomposition import PCA

import plotly.express as px

from sklearn.ensemble import RandomForestClassifier

from sklearn.model selection import GridSearchCV

from imblearn.pipeline import Pipeline

from imblearn.over sampling import SMOTE, SMOTENC

dat df =pd.read csv("diabetes binary health indicators BRFSS2015.csv", header=0,

na_ values='?", skipinitialspace=True)

#df.columns = ["Column A", "Column B"]

#numerical variable

numVars = ['BMI','GenHIth','MentHIth','PhysHIth','Age','Education','Income']

catVars = [x for x in dat_df.columns if x not in numVars]

dat_df
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#scale numerical variables Z-score transformation

scaler = StandardScaler()

scaled dat df = dat_df.copy()

scaled dat df[numVars] = scaler.fit_transform(dat df[numVars])

#Separates Binary and Non-binary columns from dataframe

def create binary dataframe(df):

binary columns = []

for column in df.columns:

if dffcolumn].isin([0, 1]).all():

binary columns.append(column)

if binary columns:

return df[binary columns].copy()

else:



return pd.DataFrame() # Return an empty DataFrame if no binary columns

binary df diabetes = create binary dataframe(scaled dat df)

def create nonbinary dataframe(df):

nonbinary columns =[]

for column in df.columns:

if not df[column].isin([0, 1]).all():

nonbinary columns.append(column)

if nonbinary columns:

return df[nonbinary columns].copy()

else:

return pd.DataFrame() # Return an empty DataFrame if no binary columns

nonbinary df diabetes = create nonbinary dataframe(scaled dat df)

print(nonbinary df diabetes)
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defjaccard similarity(coll, col2):

intersection = np.logical and(coll, col2).sum()

union = np.logical or(coll, col2).sum()

return intersection / union if union > 0 else 0

def jaccard similarity matrix(df):

num_cols = len(df.columns)

similarity matrix = pd.DataFrame(index=df.columns, columns=df.columns)

for 1 in range(num_ cols):

for j in range(i, num_cols):

coll = df.iloc[:, 1]

col2 = df.iloc[:, j]

similarity = jaccard similarity(coll, col2)

similarity matrix.iloc[1, j] = similarity

similarity matrix.iloc[j, i] = similarity # Matrix is symmetric

return similarity matrix
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df = pd.DataFrame(binary df diabetes)

similarity matrix = jaccard similarity matrix(binary df diabetes)

print(similarity matrix)

similarity matrix = similarity matrix[similarity matrix.columns].astype(float)

#Plotting Jaccard Similarity Matrix

fig, ax = plt.subplots(figsize=(12,12))

sns.heatmap(similarity matrix, annot=True, cmap="viridis", linewidths=.5)

plt.title("Heatmap of Jaccard Similarities of Binary Features", fontsize = 20)

plt.show()
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Pearson Correlation Matrix:

pearson_correlation_matrix _diabetes = nonbinary df diabetes.corr()

print(pearson_correlation _matrix_diabetes)

fig, ax = plt.subplots(figsize=(12,12))

_n

sns.heatmap(pearson_correlation matrix diabetes, annot=True, cmap="magma",

linewidths=.5)

plt.title("Pearson Correlation Heatmap of (Scaled) Integer Features", fontsize = 18)

plt.show()

Q1

2.1. Logistic regression

import numpy as np

import pandas as pd

from sklearn.linear model import LogisticRegression

from sklearn.preprocessing import StandardScaler
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from sklearn.model selection import train_test split

from sklearn.metrics import confusion_matrix, roc_curve, auc, accuracy_score,

precision_score, recall score, f1_score, ConfusionMatrixDisplay

from sklearn.inspection import permutation_importance

from sklearn.utils import class weight

import matplotlib.pyplot as plt

import matplotlib.ticker as mticker

import seaborn as sns

from wordcloud import WordCloud

# Select features and target

features = ['HighBP', 'HighChol', 'CholCheck', 'BMI', 'Smoker', 'Stroke’',

'HeartDiseaseorAttack’,

'PhysActivity', 'Fruits', "Veggies', 'HvyAlcoholConsump', 'AnyHealthcare',

'NoDocbcCost', 'GenHIth', 'MentHIth', 'PhysHIth', 'DiffWalk', 'Age',

'Education’, 'Income'] # For male/female subsets (RQ2)



features_with_sex = ['HighBP', 'HighChol', 'CholCheck’, 'BMI', 'Smoker', 'Stroke',

'HeartDiseaseorAttack’,

'PhysActivity', 'Fruits', "Veggies', 'HvyAlcoholConsump', 'AnyHealthcare',

'NoDocbcCost', 'GenHIth', 'MentHIth', 'PhysHIth', 'DiffWalk', 'Age',

'Education’, 'Income’, 'Sex'] # For RQ1 (includes 'Sex') # 'Sex' added for RQ1

X =scaled dat dfffeatures]

y =scaled dat df['Diabetes binary']

gender = scaled dat df['Sex'] # 0 = Female, 1 = Male

# Split data by gender

male idx = gender ==

female idx = gender ==

X male, y male = X[male idx], y[male idx]

X female, y female = X[female i1dx], y[female idx]

# Scale features

scaler = StandardScaler()
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X scaled = scaler.fit_transform(X)

X male_scaled = scaler.fit_transform(X_ male)

X female scaled = scaler.fit_transform(X_female)

# Define features and target

X rql =scaled dat dfJfeatures with sex]

y =scaled dat df['Diabetes binary']

# 70/30 Train-Test Split (Stratified)

X train, X test, y train, y test = train_test split(

X rql,y, test size=0.3, random_state=42, stratify=y

# Scale numeric features (fit only on training data)

scaler = StandardScaler()

X train_scaled = scaler.fit_transform(X_train)

X test scaled = scaler.transform(X _test)
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# Logistic Regression model

log reg = LogisticRegression(class_weight='balanced', max_iter=1000)

log reg.fit(X train_scaled, y train)

# Predict on test set

y_pred_test =log reg.predict(X test scaled)

# Confusion Matrix and ROC/AUC

cm_overall = confusion_matrix(y test, y pred test)

fpr overall, tpr overall, =roc curve(y test, log reg.predict proba(X test scaled)[:,

17)

auc_overall = auc(fpr_overall, tpr_overall)

# Odds Ratios

odds ratios = np.exp(log_reg.coef [0])

features rql = features with sex
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# Calculate odds ratios and 95% confidence intervals

import statsmodels.api as sm

# Refit logistic regression model using statsmodels for detailed summary

X sm=sm.add constant(X rql scaled) # Add intercept

model sm = sm.Logit(y, X sm).fit(disp=False)

# ROC Curve for Overall

plt.figure(figsize=(10, 6))

plt.plot(fpr_overall, tpr overall, label=f'Overall (AUC = {auc_overall:.2f})', color="blue")

plt.plot([0, 1], [0, 1], 'k--")

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate")

plt.title("'Overall ROC Curves for Logistic Regression')

plt.legend()

plt.show()

# Get odds ratios and confidence intervals



odds_ratios = np.exp(model sm.params)

conf =model sm.conf int()

conf.columns = [2.5%', '97.5%']

conf exp = np.exp(conf)

# Combine into a single table

odds table = pd.DataFrame({

'Feature': ['Intercept'] + features rql,

'Odds Ratio': odds_ratios.round(4),

'CI Lower (2.5%)": conf exp['2.5%'].round(4),

'CI Upper (97.5%)": conf exp['97.5%'].round(4)

1)

print("\nOdds Ratios for Logistic Regression (Overall with Sex):")

print(odds_table.to string(index=False))

# Permutation importance for overall model
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perm_importance overall = permutation_importance(log reg, X rql scaled, y,

scoring="roc_auc', random_state=42, n_repeats=10)

importance overall = perm_importance overall.importances mean

std_overall = perm_importance overall.importances_std

import matplotlib.pyplot as plt

from sklearn.metrics import ConfusionMatrixDisplay

# Overall Confusion Matrix Plot

fig, ax = plt.subplots()

disp_overall = ConfusionMatrixDisplay(confusion matrix=cm_overall,

display labels=[0, 1])

disp_overall.plot(ax=ax, values format='d', cmap="viridis', colorbar=True)

ax.set_title("Confusion Matrix - Overall - Logistic regression")

ax.set xticklabels(['Predicted Negative', 'Predicted Positive'])

ax.set yticklabels(['True Negative', "True Positive'])

plt.show()



2.2. Random forest

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import statistics

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import OneHotEncoder

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.model selection import train test split

import tensorflow as tf

#from keras.datasets import fashion mnist

from tensorflow.keras import layers

from sklearn.inspection import permutation_importance
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from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score,

roc_curve, auc, recall score

from sklearn.metrics import accuracy_score, confusion matrix, f1_score

from sklearn.decomposition import PCA

import plotly.express as px

from sklearn.ensemble import RandomForestClassifier

from sklearn.model selection import GridSearchCV

#0verall Data

dat df =pd.read csv("diabetes binary health indicators BRFSS2015.csv", header=0,

na_ values='?", skipinitialspace=True)

#df.columns = ["Column A", "Column B"]

#numerical variable

numVars = ['BMI','GenHIth','MentHIth','PhysHIth','Age','Education’,'Income']

catVars = [x for x in dat_df.columns if x not in numVars]

dat df =dat_df.dropna()

scaler = StandardScaler()
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scaled dat df = dat_df.copy()

scaled dat df[numVars] = scaler.fit_transform(dat df[numVars])

#Male and Female superset

X =scaled dat_df.drop('Diabetes_binary', axis=1)

y =scaled dat df['Diabetes binary']

#Overall Random Forest Model

rf model grid combined = rf model grid.fit(X train, y train)

y_pred combined = rf model grid combined.predict(X test)

accuracy combined = accuracy score(y_test, y pred combined)

print(accuracy combined)

#Important combined features

from sklearn.inspection import permutation_importance

from sklearn.metrics import get scorer
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from scikeras.wrappers import KerasClassifier

def scorer(model, X, y):

y_pred = model.predict(X)

return roc_auc_score(y, y_pred)

perm = permutation_importance(rf model grid combined, X test, y test, n_repeats=3,

random_state=0, scoring=scorer)

importance = pd.DataFrame({'Feature': X train.columns,

'Importance': perm["importances mean"],

'Standard Deviation': perm["importances_std"]})

combined importance = importance.sort values('Importance',ascending=False)

print(importance[['Feature',' Tmportance','Standard Deviation']].to_string(index=False))
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#Graphing Feature Importance

combined importance.plot(figsize=(15,5),x='Feature',y="Importance’ kind="bar" ,yerr='St

andard Deviation')

plt.title("Permutation Feature Importance (Overall)")

plt.ylabel("ROC AUC Performance Drop")

plt.xticks(rotation=45)

plt.savefig("Permutation Feature Importance of Random Forest (Overall)", dpi = 300)

plt.show()

from sklearn import metrics

actual combined = np.random.binomial(1,.9,size = 1000)

predicted combined = np.random.binomial(1,.9,size = 1000)

confusion_matrix _combined = metrics.confusion_matrix(y_test, y pred)

cm_display combined = metrics.ConfusionMatrixDisplay(confusion matrix =

confusion_matrix_combined, display labels = [0, 1])



cm_display combined.plot()

plt.title("Confusion Matrix of Random Forest (Overall)")

plt.savefig("Confusion Matrix of Random Forest (Overall)", dpi = 300)

plt.show()

2.3. Neural network

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import statistics

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import OneHotEncoder

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.model selection import train_test split
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import tensorflow as tf

from tensorflow.keras import layers

from sklearn.inspection import permutation_importance

from sklearn.metrics import classification_report, confusion _matrix, roc_auc_score,

ToC_curve, auc

from sklearn.metrics import accuracy score

from sklearn.decomposition import PCA

import plotly.express as px

dat df =pd.read csv("diabetes binary health indicators BRFSS2015.csv", header=0,

na_ values='?", skipinitialspace=True)

#numerical variables

numVars = ['BMI','GenHIth','MentHIth','PhysHIth','Age','Education’,'Income']

#categorical variables

catVars = [x for x in dat_df.columns if x not in numVars]

dat df =dat_df.dropna()
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#scale numerical variables Z-score transformation

scaler = StandardScaler()

scaled dat df = dat_df.copy()

scaled dat df[numVars] = scaler.fit_transform(dat df[numVars])

#Male and Female superset

X =scaled dat df.drop(['Diabetes binary','Sex'], axis=1)

y =scaled dat df['Diabetes binary']

#Overall Neural Network Model

X train, X test, y train, y test = train test split(X, y, test size=0.2, random_state=123)

mf model = tf.keras.Sequential()

mf model.add(tf.keras.layers.Input(shape=(X train.shape[1],)))

mf model.add(tf .keras.layers.Dense(16, activation="relu"))

mf model.add(tf.keras.layers.Dense(8, activation="relu'))

mf model.add(tf.keras.layers.Dense(1, activation='sigmoid"))

#Class weight for Overall Neural Network Model

from sklearn.utils import class_weight
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y_train = np.array(y_train).astype('int32').flatten()

weights =
class_weight.compute class weight(class_weight='balanced',classes=np.array([0,1]),y=y

_train)

cw = {0: weights[0], 1: weights[1]}

#Overall Neural Network Model with balanced weight

mf model.compile(optimizer="adam', loss='binary crossentropy',

metrics=['accuracy'])

mf model.fit(X_train,y train,epochs=20, class weight=cw)

#Overall Neural Network Confusion Matrix

import matplotlib.pyplot as plt

import numpy

from sklearn import metrics

y_probs = mf model.predict(X test)

y_pred = (y_probs >= 0.5).astype(int)
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confusion_matrix = metrics.confusion_matrix(y_test, y _pred)

cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix,

display labels = [0, 1])

cm_display.plot()

plt.title("Confusion Matrix of Neural Network (Overall)")

plt.show()

# Overall Neural Network Performance Metrics

from sklearn.metrics import accuracy score, recall score, f1 score, roc_curve,

confusion_matrix

y_probs = mf model.predict(X test)

y_pred = (y_probs >= 0.5).astype(int)

cm_mf = confusion matrix(y_test, y pred)

print("Confusion Matrix (male and female): ")

print(cm_mf)

accuracy = accuracy_score(y_test,y pred)

sensitivity = recall_score(y_test,y pred, pos_label=1)



specificity = recall _score(y_test, y pred, pos_label=0)

fl1 =f1 score(y_test, y pred)

print("Accuracy:", accuracy)

print("Sensitivity:", sensitivity)

print("Specificity:", specificity)

print("F1:", f1)

# Overall Neural Network ROC plot function

def plot roc overall(y truth, y prob, ax):

FPR, TPR, thresholds =roc_curve(y_truth, y prob)

AUC = np.trapz(TPR, FPR)

ax.step(FPR, TPR, linewidth=2,label='Overall (AUC ="+ str(round(AUC,2)) +")")

ax.plot([0,1],[0,1],'--', color = 'black")

fs=10

ax.set xlabel('False Positive Rate', fontsize=fs)

ax.set_ylabel('True Positive Rate', fontsize=fs)

ax.tick_params(axis='both', labelsize=fs)

ax.set_title("ROC Curves for Neural Network')
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ax.legend(loc="upper left',fontsize=fs)

# Overall ROC plot for Neural Network Model

fig, ax = plt.subplots(figsize=(8,6))

plot_roc_overall(y_test, y probs, ax)

plt.show()

#Important features for both male and female (Overall)

from sklearn.inspection import permutation_importance

from sklearn.metrics import get scorer

from scikeras.wrappers import KerasClassifier

def scorer(model, X, y):

y_pred = model.predict(X)

return roc_auc_score(y, y_pred)

perm = permutation_importance(mf model, X test, y test, n_repeats=3,

random_state=0, scoring=scorer)

importance = pd.DataFrame({'Feature': X train.columns,

'Importance': perm["importances mean"],
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'Standard Deviation': perm["importances std"]})

mf importance = importance.sort_values('Importance',ascending=False)

print(mf_importance[['Feature', Importance','Standard

Deviation']].to_string(index=False))

# Feature importance plot (Overall)

mf importance.plot(figsize=(15,5),x='Feature',y='Tmportance',kind="bar",yerr='Standard

Deviation')

plt.title("Neural Network Permutation Feature Importance (Male and Female)")

plt.ylabel("ROC AUC Performance Drop")

plt.xticks(rotation=45)

plt.show()

Q2

3.1. Logistic regression
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# Logistic Regression - Male

X train_ m, X test m,y train m,y test m = train test split(X male scaled, y male,

test_size=0.3, random_state=42)

y_train_m = np.array(y_train_m).astype('int32').flatten()

weights male = class weight.compute class weight(class weight='balanced',

classes=np.array([0, 1]), y=y_train_m)

cw_male = {0: weights male[0], 1: weights male[1]}

log reg male = LogisticRegression(class weight=cw_male, max_iter=1000)

log reg male.fit(X train m, y train m)

y pred m = log reg male.predict(X test m)

cm_m = confusion matrix(y test m,y pred m)

fpr m, tpr m, =roc curve(y test m, log reg male.predict proba(X test m)[:, 1])

auc_m = auc(fpr_m, tpr_m)

# Logistic Regression - Female

X train_f, X test f,y train f,y test f=train test split(X female scaled, y female,

test _size=0.3, random_state=42)



y_train_f=np.array(y_train_f).astype('int32").flatten()

weights_female = class_weight.compute class weight(class weight="balanced',

classes=np.array([0, 1]), y=y_train_f)

cw_female = {0: weights_female[0], 1: weights female[1]}

log reg female = LogisticRegression(class weight=cw female, max_iter=1000)

log reg female.fit(X train f,y train f)

y _pred f=Ilog reg female.predict(X test f)

cm_f = confusion_matrix(y_test f,y pred f)

fpr f, tpr f, =roc curve(y test f, log reg female.predict proba(X test f)[:, 1])

auc_f=auc(fpr_f, tpr f)

# Permutation Importance

perm_importance m = permutation_importance(log reg male, X test m, y test m,

scoring="roc_auc', random_state=42, n_repeats=10)

perm_importance f= permutation importance(log reg female, X test f,y test f,

scoring="roc_auc', random_state=42, n_repeats=10)
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importance male = perm_importance m.importances_mean

importance female = perm_importance f.importances mean

std_male = perm_importance m.importances_std

std_female = perm_importance f.importances_std

# Raw importance difference calculation

importance diff = importance male - importance female

importance diff df = pd.DataFrame({

'Feature': features,

'Importance Male': importance male,

'Importance Female': importance female,

'Difference (Male - Female)': importance diff

1)

print("\nRaw Importance Differences (Male - Female):")

print(importance diff df.sort values(by='Difference (Male - Female)',

ascending=False).to_string(index=False))
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# Permutation Feature Importance Charts

# Sort features and importance by male importance

sort_indices = np.argsort(importance_male)[::-1]

features_sorted = [features[i] for i in sort_indices]

importance male sorted = importance male[sort indices]

std male sorted = std male[sort indices]

#std female sorted =std female[sort indices]

sort_indices = np.argsort(importance female)[::-1]

features sorted = [features[i] for i in sort_indices]

importance female sorted = importance female[sort indices]

std female sorted =std female[sort indices]

# Male Confusion Matrix Plot

fig, ax = plt.subplots()

disp_male = ConfusionMatrixDisplay(confusion matrix=cm_m, display_labels=[0, 1])

disp_male.plot(ax=ax, values format='d', cmap='viridis', colorbar=True)

ax.set_title("Confusion Matrix - Male - Logistic regression")

ax.set xticklabels(['Predicted Negative', 'Predicted Positive'])
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ax.set_yticklabels(['True Negative', 'True Positive'])

plt.show()

# Female Confusion Matrix Plot

fig, ax = plt.subplots()

disp female = ConfusionMatrixDisplay(confusion matrix=cm_f, display labels=[0, 1])

disp female.plot(ax=ax, values format='d', cmap='viridis', colorbar=True)

ax.set _title("Confusion Matrix - Female - Logistic regression")

ax.set xticklabels(['Predicted Negative', 'Predicted Positive'])

ax.set yticklabels(['True Negative', "True Positive'])

plt.show()

# Combined ROC Curve for Overall, Male, and Female

plt.figure(figsize=(10, 6))

plt.plot(fpr_overall, tpr overall, label=f'Overall (AUC = {auc_overall:.2f})', color="blue")

plt.plot(fpr_m, tpr m, label=f'Male (AUC = {auc_m:.2f})', color='green")

plt.plot(fpr_f, tpr f, label=f'Female (AUC = {auc_f:.2f})', color="red")

pltplOt([OJ 1]: [Oa 1]: 'k-_')
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plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate")

plt.title('Combined ROC Curves for Logistic Regression')

plt.legend()

plt.show()

# Plot for Male

df male = pd.DataFrame({'Feature': features_sorted, 'Importance':

importance male sorted, 'Standard Deviation': std male sorted})

df male.plot(figsize=(15, 5), x="Feature', y="ITmportance', kind="bar", yerr='Standard

Deviation')

plt.title("Permutation Feature Importance (Male)-Logistic regression")

plt.ylabel("ROC AUC Performance Drop")

plt.xticks(rotation=45)

plt.show()

# Plot for Female

df female = pd.DataFrame({'Feature': features_sorted, 'Importance':

importance female sorted, 'Standard Deviation': std female sorted})
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df female.plot(figsize=(15, 5), x='Feature', y='Importance', kind="bar", yerr='Standard

Deviation')

plt.title("Permutation Feature Importance (Female)-Logistic regression")

plt.ylabel("ROC AUC Performance Drop")

plt.xticks(rotation=45)

plt.show()

# Step 1: Merge Male and Female Importance DataFrames

df diff = pd.merge(df male, df female, on='Feature', suffixes=(' Male',' Female'))

# Step 2: Calculate difference (Male - Female)

df diff['Difference'] = df diff]'Importance Male'] - df diff['Importance Female']

# Step 3: Sort by absolute difference

# Step 3: Sort by raw difference (positive to negative)

df diff sorted = df diff.sort values(by='Difference', ascending=False)
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# Step 4: Plot the difference

plt.figure(figsize=(10, 6))

plt.barh(df diff sorted['Feature'], df diff sorted['Difference'], color="skyblue')

plt.xlabel("Difference in Importance (Male - Female)")

plt.title("Feature Importance Difference Between Males and Females (Logistic

regression)")

plt.axvline(x=0, color='gray’', linestyle='--")

plt.gca().invert yaxis() # Show largest difference at the top

plt.tight layout()

plt.show()

# Calculate metrics

def calculate_metrics(y_true, y pred):

cm = confusion_matrix(y true, y pred)

tn, fp, fn, tp = cm.ravel()

accuracy = accuracy_score(y_true, y pred)

precision = precision_score(y_true, y_pred)

recall =recall score(y true, y pred)
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specificity = tn / (tn + fp) if (tn + fp) > 0 else 0

fl1 =f1 score(y_true, y pred)

sensitivity = recall # alias for clarity

return {

'Accuracy': accuracy,

'Precision': precision,

'Recall': recall,

'Sensitivity': sensitivity,

'Specificity': specificity,

'F1': f1

# Metrics

metrics_overall = calculate metrics(y, y_pred overall)

metrics_male = calculate_metrics(y test m,y pred m)

metrics_female = calculate metrics(y_test f,y pred f)
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print("Overall Metrics:")

for k, v in metrics_overall.items():

print(f"{k}: {v:..4f}")

print("\nMale Metrics:")

for k, v in metrics male.items():

print(f" {k}: {v:.4f}")

print("\nFemale Metrics:")

for k, v in metrics_female.items():

print(f" {k}: {v:.4f}")

3.2. Random forest

#Male and Female

X train, X test, y train, y test = train_test split(X, y, test size=0.2, random_state=123)
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#Male subset

male df =scaled dat df[scaled dat df['Sex'] == 1.0].copy()

#Female subset

female df =scaled dat df[scaled dat df['Sex'] == 0.0].copy()

from sklearn.utils import resample

female downsampled = resample(female df, replace=False,

n_samples=len(male df),

random_state=123)

female downsampled

#Male

X male =male df.drop(['Diabetes binary','Sex'], axis=1)

y male = male df['Diabetes binary']

#Female

X female = female df.drop(['Diabetes binary','Sex'], axis=1)

y_female = female df['Diabetes binary']
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#Female downsampled

X female ds = female downsampled.drop(['Diabetes binary','Sex'], axis=1)

y_female ds = female downsampled|['Diabetes binary']

#Male

X train_male, X test male, y train male, y test male = train_test split(X male,

y_male, test size=0.2, random_state=123)

#Female

X train_female, X test female, y train female, y test female =

train_test split(X female, y female, test size=0.2, random_state=123)

#Female downsampled

X train_female ds, X test female ds,y train female ds,y test female ds=

train_test split(X female ds,y female ds, test size=0.2, random_state=123)

#Male
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X train_male, X test male, y train male, y test male = train_test split(X male,

y_male, test _size=0.2, random_state=123)

#Female

X train_female, X test female, y train female, y test female =

train_test split(X female, y female, test size=0.2, random_state=123)

#Female downsampled

X train_female ds, X test female ds,y train female ds,y test female ds=

train_test split(X female ds,y female ds, test size=0.2, random_state=123)

#QGridSearch

grid search = GridSearchCV(RandomForestClassifier(), param_dist, cv=5, n_jobs=-1,

scoring = 'recall')

grid_search.fit(X train, y train)

print(grid_search.best params )

#Random Forest

rf model grid = RandomForestClassifier(
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n_estimators=200,

max_depth=5,

min_samples_split=20,

max_features='log2',

class weight="balanced'

#Male Subset Random Forest

rf model grid male = rf model grid.fit(X train male, y train _male)

y pred proba male =rf model grid male.predict proba(X test male)[:, 1]

y_pred male =rf model grid male.predict(X test male)

accuracy male = accuracy score(y test male, y pred male)

print(accuracy male)

recall male = recall score(y test male, y pred male, average='binary')

print(recall _male)

specificity male =recall score(y test male, y pred male, average="binary', pos label =

0)

print(specificity male)
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fl1 score male = fl score(y test male,y pred male, average='binary")

print(f1_score male)

auc_male =roc_auc_score(y_test male, y pred proba male)

print(auc_male)

fpr_male, tpr_male, thresholds male = roc_curve(y test male, y pred proba male)

roc_auc male = auc(fpr_male, tpr male)

plt.figure(figsize=(8, 6))

plt.plot(fpr_male, tpr male, color='orange', Iw=2, label=f'ROC curve (area =

{roc_auc_male:.2f})")

plt.plot([0, 1], [0, 1], color="navy', Iw=2, linestyle='--") # Random classifier

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC Curve Random Forest (Male)')

plt.legend(loc="lower right")

plt.savefig('ROC Curve for Random Forest (Male)', dpi = 300)
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plt.show()

from sklearn.datasets import make_classification

from sklearn.inspection import permutation_importance

import shap

from sklearn.inspection import permutation_importance

from sklearn.metrics import get scorer

from scikeras.wrappers import KerasClassifier

def scorer(model, X, y):

y_pred = model.predict(X)

return roc_auc_score(y, y_pred)

perm = permutation_importance(rf model grid male, X test male, y test male,

n_repeats=3,

random_state=0, scoring=scorer)

importance = pd.DataFrame({'Feature': X train male.columns,
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'Importance': perm["importances_mean"],

'Standard Deviation': perm["importances std"]})

male_importance = importance.sort_values('Importance',ascending=False)

print(male importance[['Feature', Importance','Standard

Deviation']].to_string(index=False))

male importance.plot(figsize=(15,5),x="Feature',y="Tmportance',kind="bar",yerr="'Standar

d Deviation')

plt.title("Permutation Feature Importance of Random Forest (Male)")

plt.ylabel("ROC AUC Performance Drop")

plt.xticks(rotation=45)

plt.savefig("Permutation Feature Importance of Random Forest (Male)", dpi = 300)

plt.show()

#Female Subset Random Forest

rf model grid female =rf model grid.fit(X train female, y train female)

y pred proba female =rf model grid female.predict proba(X test female)[:, 1]



y_pred female =rf model grid female.predict(X test female)

accuracy female = accuracy score(y_test female, y pred female)

print(accuracy female)

recall female =recall score(y test female, y pred female, average="binary')

print(recall female)

specificity female =recall score(y test female, y pred female, average="binary’,

pos_label = 0)

print(specificity female)

fl score female =f1 score(y test female, y pred female, average='binary")

print(f1_score female)

auc_female =roc_auc score(y test female, y pred proba female)

print(auc female)

fpr female, tpr_female, thresholds female =roc_curve(y test female,

y pred proba female)

roc_auc female = auc(fpr female, tpr female)

plt.figure(figsize=(8, 6))
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plt.plot(fpr_female, tpr female, color="green', Iw=2, label=f'ROC curve (area =

{roc_auc_female:.2f})")

plt.plot([0, 1], [0, 1], color="navy', Iw=2, linestyle="--") # Random classifier

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC Curve for Random Forest (Female)')

plt.legend(loc="lower right")

plt.savefig('ROC Curve for Random Forest (Female)', dpi = 300)

plt.show()

#Important female features

from sklearn.inspection import permutation_importance

from sklearn.metrics import get scorer

from scikeras.wrappers import KerasClassifier

def scorer(model, X, y):
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y_pred = model.predict(X)

return roc_auc_score(y, y_pred)

perm = permutation_importance(rf model grid female, X test female, y test female,

n_repeats=3,

random_state=0, scoring=scorer)

importance = pd.DataFrame({'Feature': X train female.columns,

'Importance': perm["importances mean"],

'Standard Deviation': perm["importances_std"]})

female importance = importance.sort values('Importance',ascending=False)

print(importance[['Feature',' Tmportance','Standard Deviation']].to_string(index=False))

female importance.plot(figsize=(15,5),x='Feature',y='Importance',kind="bar",yerr='Stand

ard Deviation')

plt.title("Permutation Feature Importance of Random Forest (Female)")
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plt.ylabel("ROC AUC Performance Drop")

plt.xticks(rotation=45)

plt.savefig("Permutation Feature Importance of Random Forest (Female)", dpi = 300)

plt.show()

#Combining Male and Female Sets

sorted df male importance = male importance.sort values(by='Feature')

sorted df female importance = female importance.sort values(by='Feature')

merged df importance = pd.merge(left=male importance, right=female importance,

on='Feature', how='inner")

difference importance df=merged df importance.drop(columns=['Standard

Deviation x','Standard Deviation y'], axis=I, inplace=False)

difference importance df.head()

difference importance df.columns = ['Feature', 'Male', 'Female']

difference importance df.head()
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#Difference Between Male and Female Feature Importances

import matplotlib.pyplot as plt

import pandas as pd

# Feature importance data

df = pd.DataFrame(difference importance df)

df["Difference"] = df"Male"] - df["Female"]

# Sort by raw difference (not by absolute value)

df sorted = df.sort values("Difference", ascending=False)

# Plot

plt.figure(figsize=(10, 6))

bars = plt.barh(df sorted["Feature"], df sorted["Difference"], color="skyblue')
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plt.xlabel("Difference in Importance (Male - Female)")

plt.title("Permutation Feature Importance Difference Between Males and Females

(Random Forest)")

plt.axvline(x=0, color='gray', linestyle='"--")

plt.gca().invert _yaxis() # Highest difference at the top

plt.tight layout()

plt.savefig("Permutation Feature Importance Difference Between Males and Females

(Random Forest)", dpi = 300)

plt.show()

y pred proba combined =rf model grid combined.predict proba(X test)[:, 1]

y_pred =rf model grid combined.predict(X test)

fpr combined, tpr combined, thresholds combined =roc curve(y test,

y_pred proba combined)

roc_auc combined = auc(fpr _combined, tpr combined)

#Graphing ROC Curves
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plt.figure(figsize=(8, 6))

plt.plot(fpr_male, tpr_male, color='orange', Iw=2, label=fROC curve (male) (area =

{roc_auc_male:.2f})")

plt.plot(fpr combined, tpr combined, color="blue', Iw=2, label='ROC curve (overall)

(area = {roc_auc combined:.2f})")

plt.plot(fpr_female, tpr female, color='green’, Iw=2, label=fROC curve (female) (area =

{roc_auc_female:.2f})")

plt.plot([0, 1], [0, 1], color="navy', Iw=2, linestyle="--") # Random classifier

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate")

plt.title('ROC Curve for Random Forest (Overall)')

plt.legend(loc="lower right")

plt.savefig('ROC Curve for Random Forest (Overall)', dpi = 300)

plt.show()
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#Confusion Matrix Female

actual _combined = np.random.binomial(1,.9,size = 1000)

predicted combined = np.random.binomial(1,.9,size = 1000)

confusion_matrix female = metrics.confusion_matrix(y_test female, y pred female)

cm_display female = metrics.ConfusionMatrixDisplay(confusion matrix =

confusion matrix female, display labels = [0, 1])

cm_display female.plot()

plt.title("Confusion Matrix of Random Forest (Female)")

plt.savefig("Confusion Matrix of Random Forest (Female)", dpi = 300)

plt.show()

#Confusion Matrix Male
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from sklearn import metrics

actual_male = np.random.binomial(1,.9,size = 1000)

predicted _male = np.random.binomial(1,.9,size = 1000)

confusion matrix male = metrics.confusion matrix(y test male, y pred male)

cm_display male = metrics.ConfusionMatrixDisplay(confusion matrix =

confusion matrix male, display labels = [0, 1])

cm_display male.plot()

plt.title("Confusion Matrix of Random Forest (Male)")

plt.savefig("Confusion Matrix of Random Forest (Male)", dpi = 300)

plt.show()

3.3. Neural network

#Male subset
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male df =scaled dat df[scaled dat df['Sex'] == 1.0].copy()

#Female subset

female df =scaled dat df[scaled dat df['Sex'] == 0.0].copy()

#Male

X male =male df.drop(['Diabetes binary','Sex'], axis=1)

y male = male df['Diabetes binary']

#Female

X female = female df.drop(['Diabetes binary','Sex'], axis=1)

y_female = female df['Diabetes binary']

#Male

X train_male, X test male, y train male, y test male = train_test split(X male,

y_male, test size=0.2, random_state=123)

#Female

X train_female, X test female, y train female, y test female =

train_test split(X female, y female, test size=0.2, random_state=123)

#Male model



male_model = tf.keras.Sequential()

male _model.add(tf keras.layers.Input(shape=(X train _male.shape[1],)))

male model.add(tf keras.layers.Dense(16, activation="relu'"))

male _model.add(tf keras.layers.Dense(8, activation="relu'))

male model.add(tf keras.layers.Dense(1, activation='sigmoid'))

#Female model

female model = tf.keras.Sequential()

female model.add(tf.keras.layers.Input(shape=(X train female.shape[1],)))

female model.add(tf.keras.layers.Dense(16, activation="relu'))

female model.add(tf.keras.layers.Dense(8, activation="relu'"))

female model.add(tf.keras.layers.Dense(1, activation='sigmoid'))

#Female model (balanced weights)

from sklearn.utils import class_weight

y train_female = np.array(y_train_female).astype('int32').flatten()

weights female =

123

class weight.compute class weight(class weight="balanced',classes=np.array([0,1]),y=y

_train_female)
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cw_female = {0: weights_female[0], 1: weights female[1]}

cw_female = {0: 0.5, 1: 5}

#Compile the female model with balanced weights

female model.compile(optimizer="adam', loss='binary crossentropy’',

metrics=['accuracy'])

female model.fit(X train female,y train female,epochs=20,class weight=cw_female)

# Female Neural Network Performance Metrics

from sklearn.metrics import accuracy score, recall score, fl score, roc curve

y_probs female = female model.predict(X test female)

y pred female = (y_probs_female >= 0.5).astype(int)

cm_female = confusion matrix(y_test female,y pred female)

print("Confusion Matrix (female): ")

print(cm_female)

accuracy female = accuracy score(y_test female,y pred female)

sensitivity female = recall score(y test female,y pred female, pos label=1)

specificity female = recall score(y test female, y pred female, pos label=0)
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fl1 female =f1 score(y_test female, y pred female)

print("Accuracy:", accuracy female)

print("Sensitivity:", sensitivity female)

print("Specificity:", specificity female)

print("F1:", f1 _female)

# Female Neural Network Confusion Matrix

import matplotlib.pyplot as plt

import numpy

from sklearn import metrics

y_probs female = female model.predict(X test female)

y _pred female = (y_probs_female >= 0.5).astype(int)

confusion matrix female = metrics.confusion matrix(y test female, y pred female)

plt.figure(figsize=(6,5))

cm_display female = metrics.ConfusionMatrixDisplay(confusion matrix =

confusion_matrix_female, display labels = [0, 1])

cm_display female.plot(colorbar=False)

plt.title("Confusion Matrix of Neural Network (Female)")
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plt.tight layout()

plt.show()

# ROC curve for female model

fig, ax = plt.subplots(figsize=(8,6))

plot_roc(y_test female, y probs female, ax)

plt.show()

#Important female features

from sklearn.inspection import permutation_importance

from sklearn.metrics import get scorer

from scikeras.wrappers import KerasClassifier

def scorer(model, X, y):

y_pred = model.predict(X)

return roc_auc_score(y, y_pred)

perm = permutation_importance(female model, X test female, y test female,

n_repeats=3,
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random_state=0, scoring=scorer)

importance = pd.DataFrame({'Feature': X train_female.columns,

'Importance': perm["importances_mean"],

'Standard Deviation': perm["importances std"]})

female importance = importance.sort values('Importance',ascending=False)

# Plot of important female features

female importance.plot(figsize=(15,5),x='Feature',y='Importance',kind="bar",yerr='Stand

ard Deviation')

plt.title("Neural Network Permutation Feature Importance (Female)")

plt.ylabel("ROC AUC Performance Drop")

plt.xticks(rotation=45)

plt.show()

# Female Neural Network ROC plot function

def plot roc female(y truth, y prob, ax):

FPR, TPR, thresholds =roc_curve(y_truth, y prob)
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AUC = np.trapz(TPR, FPR)

ax.step(FPR, TPR, linewidth=2,label="Female (AUC =" + str(round(AUC,2)) +")")

ax.plot([0,1],[0,1],'--", color = 'black")

fs=10

ax.set xlabel('False Positive Rate', fontsize=fs)

ax.set ylabel('True Positive Rate', fontsize=fs)

ax.tick_params(axis='both', labelsize=fs)

ax.set_title("ROC Curves for Neural Network')

ax.legend(loc='upper left',fontsize=fs)

# Male model (balanced weights)

from sklearn.utils import class_weight
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y_train_male = np.array(y_train_male).astype('int32").flatten()

weights_male =
class_weight.compute class weight(class_weight='balanced',classes=np.array([0,1]),y=y

_train_male)

cw_male = {0: weights male[0], 1: weights male[1]}

cw_male = {0: 0.5, 1: 5}

#Compile the male model with balanced weights

male model.compile(optimizer="adam', loss='binary crossentropy’,

metrics=['accuracy'])

male model.fit(X train_male,y train male,epochs=20,class weight=cw_male)

# Male Neural Network Performance Metrics

from sklearn.metrics import accuracy score, recall score, fl score, roc_curve

y_probs male = male model.predict(X test male)

y_pred male = (y_probs male >= (.5).astype(int)

cm_male = confusion matrix(y_test male, y pred male)



print("Confusion Matrix (male): ")

print(cm_male)

accuracy male = accuracy score(y_test male,y pred male)

sensitivity male = recall score(y_test male,y pred male, pos label=1)

specificity male =recall score(y test male, y pred male, pos label=0)

fl male =fl score(y test male, y pred male)

print("Accuracy:", accuracy male)

print("Sensitivity:", sensitivity male)

print("Specificity:", specificity male)

print("F1:", f1_male)

# Male Neural Network Confusion Matrix

import matplotlib.pyplot as plt
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import numpy

from sklearn import metrics

y_probs _male = male_model.predict(X _test male)

y_pred male = (y_probs_male >= 0.5).astype(int)

confusion_matrix_male = metrics.confusion_matrix(y_test male, y pred male)

cm_display male = metrics.ConfusionMatrixDisplay(confusion matrix =

confusion matrix male, display labels = [0, 1])

cm_display male.plot()

plt.title("Confusion Matrix of Neural Network (Male)")

plt.show()

#Important male features

from sklearn.inspection import permutation_importance

from sklearn.metrics import get scorer
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from scikeras.wrappers import KerasClassifier

def scorer(model, X, y):

y_pred = model.predict(X)

return roc_auc_score(y, y_pred)

perm = permutation_importance(male model, X test male, y test male, n repeats=3,

random_state=0, scoring=scorer)

importance = pd.DataFrame({'Feature': X train male.columns,

'Importance': perm["importances mean"],

'Standard Deviation': perm["importances_std"]})

male importance = importance.sort values('Importance',ascending=False)

print(male importance[['Feature', Importance','Standard

Deviation']].to_string(index=False)
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# Plot of important male features

male_importance.plot(figsize=(15,5),x='Feature',y='Importance',kind="bar" ,yerr='Standar

d Deviation')

plt.title("Neural Network Permutation Feature Importance (Male)")

plt.ylabel("ROC AUC Performance Drop")

plt.xticks(rotation=45)

plt.show()

# Male Neural Network ROC plot function

def plot roc male(y truth, y prob, ax):

FPR, TPR, thresholds =roc_curve(y_truth, y prob)

AUC = np.trapz(TPR, FPR)

ax.step(FPR, TPR, linewidth=2,label="Male (AUC =" + str(round(AUC,2)) +")")

ax.plot([0,1],[0,1],'--", color = 'black")

fs=10

ax.set xlabel('False Positive Rate', fontsize=fs)
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ax.set_ylabel("True Positive Rate', fontsize=fs)

ax.tick_params(axis='both', labelsize=fs)

ax.set_title("ROC Curves for Neural Network')

ax.legend(loc='upper left',fontsize=fs)

# ROC curve for male,female, and overall models

fig, ax = plt.subplots(figsize=(8,6))

plot_roc_overall(y_test, y probs, ax)

plot roc male(y test male, y probs male, ax)

plot roc female(y test female, y probs female, ax)

plt.show()

# Feature importance difference plot between males and females

import matplotlib.pyplot as plt

import pandas as pd

# Feature importance data
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data = {

"Feature": [

"GenHIth", "BMI", "HighBP", "Age", "HighChol", "HvyAlcoholConsump",

"CholCheck",

"Income", "HeartDiseaseorAttack", "MentHIth", "DiffWalk", "PhysHIth",

"PhysActivity",

"Education", "Stroke", "Smoker", "NoDocbcCost", "Veggies", "AnyHealthcare",

"Fruits"

"Female": [

0.058459, 0.039956, 0.018232, 0.015464, 0.013666, 0.003603, 0.003124,

0.002254, 0.001412, 0.000963, 0.000828, 0.000774, 0.000349,

0.000319, 0.000282, 0.000233, 0.000180, 0.000062, 0.000021, -0.000139

"Male": [

0.059273, 0.026509, 0.012096, 0.051672, 0.008858, 0.003717, 0.004597,

0.003047, 0.003098, 0.000628, 0.001704, 0.001101, 0.000337,
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0.000182, 0.000629, -0.000328, -0.000087, 0.000120, 0.000097, 0.000446

df = pd.DataFrame(data)

df["Difference"] = df["Male"] - df["Female"]

# Sort by raw difference (not by absolute value)

df sorted = df.sort values("Difference", ascending=False)

# Plot

plt.figure(figsize=(10, 6))

bars = plt.barh(df sorted["Feature"], df sorted["Difference"], color="skyblue')

plt.xlabel("Difference in Importance (Male - Female)")

plt.title("Feature Importance Difference Between Males and Females (Neural Network)")

plt.axvline(x=0, color='gray’, linestyle="--")

plt.gca().invert _yaxis() # Highest difference at the top



plt.tight layout()

plt.grid()

plt.show()

4. Conclusion

# Load the uploaded CSV file

file_path ='male female importance difference.csv'

df = pd.read_csv(file path)

# Add a new column for mean difference across the three models

df['mean_difference'] = df['logistic regression', 'random_forest',

'neural network']].mean(axis=1)

# Sort the dataframe by the mean difference

df sorted = df.sort values(by="mean_difference',

ascending=False).drop(columns='mean_difference')

# Set 'Feature' as index again
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df heatmap sorted = df sorted.set index('Feature')

# Create the sorted heatmap

plt.figure(figsize=(10, 12))

sns.heatmap(df heatmap sorted, annot=True, cmap='coolwarm', center=0, linewidths=0.5,

fimt="4f")

plt.title('Feature Importance Difference (Male - Female) — Sorted by Mean Difference')

plt.ylabel('Feature')

plt.xlabel('"Model')

plt.tight layout()

plt.savefig('feature importance difference.tiff', dpi=300, format="tiff")

plt.show()



